Demand Response Potential of Drinking Water Distribution Networks

Date

2025-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

2887

Ending Page

Alternative Title

Abstract

Pumps in drinking water distribution networks can be controlled to participate in demand response programs. In this paper, we estimate the demand response potential of water distribution networks based on actual network data. We calculate the power and energy capacities of community water systems within Wisconsin and Arizona, drawing on publicly available data of consumer water demand, population served, storage tanks, and pump specifications. We then extrapolate this data to get an order-of-magnitude estimate for the entire United States. Overall, we found that water distribution networks are sizable demand response assets with an estimated power capacity of 13 GW and energy capacity of 750 GWh in the United States. We also found that large and very large utilities may be the best demand response candidates. This paper also discusses factors impacting water supply flexibility and future research directions.

Description

Keywords

Distributed, Renewable, and Mobile Resources, ancillary services, demand response, flexible loads, water distribution network, water pumping

Citation

Extent

9

Format

Geographic Location

Time Period

Related To

Proceedings of the 58th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.