Sharing Open Deep Learning Models

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

We examine how and why trained deep learning (DL) models are shared, and by whom, and why some developers share their models while others do not. Prior research has examined sharing of data and software code, but DL models are a hybrid of the two. The results from a Qualtrics survey administered to GitHub users and academics who publish on DL show that a diverse population shares DL models, from students to computer/data scientists. We find that motivations for sharing include: increasing citation rates; contributing to the collaboration of developing new DL models; encouraging to reuse; establishing a good reputation; receiving feedback to improve the model; and personal enjoyment. Reasons for not sharing include: lack of time; thinking that their models would not be interesting for others; and not having permission for sharing. The study contributes to our understanding of motivations for participating in a novel form of peer-production.

Description

Keywords

Collective Intelligence and Crowds, Digital and Social Media, Deep learning, Model sharing, Transfer learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.