Show Me Your Claims and I'll Tell You Your Offenses: Machine Learning-Based Decision Support for Fraud Detection on Medical Claim Data

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Health insurance claim fraud is a serious issue for the healthcare industry as it drives up costs and inefficiency. Therefore, claim fraud must be effectively detected to provide economical and high-quality healthcare. In practice, however, fraud detection is mainly performed by domain experts resulting in significant cost and resource consumption. This paper presents a novel Convolutional Neural Network-based fraud detection approach that was developed, implemented, and evaluated on Medicare Part B records. The model aids manual fraud detection by classifying potential types of fraud, which can then be specifically analyzed. Our model is the first of its kind for Medicare data, yields an AUC of 0.7 for selected fraud types and provides an applicable method for medical claim fraud detection.

Description

Keywords

Decision Support for Healthcare Processes and Services, digital health, fraud detection, healthcare, machine learning

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.