Effects of Sea Level on Reef Habitats of Papahanaumokuakea Marine National Monument During the Last Glacial Maximum

Date

2011

Contributor

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Mesophotic Coral Ecosystems (MCE) (50-100m) are not as well understood as their shallower counter-part, the Photic Reef Ecosystem (PRE) (0-50m). The disparity in the level of understanding between the two regions is mainly due to the difficulty in getting observations from these depths. This study used Geographic Information System (GIS) software to calculate habitat increases of 88.53% (5605.34 km2) in the PRE from the Last Glacial Maximum (LGM), when the sea level was 120m below the present day sea level. A statistically similar amount of habitat gain was found between the MCE and PRE (Show stat values). Understanding habitat changes will allow scientists to deduce causes of important differences in ecosystem characteristics between these two environments, such as endemism rates. PRE endemism rates for fish in Papahānaumokuākea Marine National Monument (PMNM) are 20.6% (DeMartini, Friedlander, 2004) while several dives in MCE habitat on Midway atoll recorded endemic fish rates above 90% (NOAA 2010, Unpublished). Similar changes in area between PRE and MCE, coupled with drastically different fish endemism rates suggests a continuous MCE habitat regime while the PRE experienced dramatic changes inducing extinctions or sever loss of biota. Rate of sea level rise may have had the most detrimental impact on the PRE, increasing as much as 25mm/yr during meltwater pulse episodes which lasted as long as 1000 years (Fletcher, Sherman, 1995). These relatively rapid rates are faster than the accretion rate of corals in PMNM, subsequently leading to drowning of the ecosystem. As MCE are not heavily light dependent and probably cover a wider depth range than PRE, likely exhibit more continuity and habitat stability. A stable and long lasting isolated habitat is required for the evolutionary processes to produce unique animals that are found nowhere else in the world. The Continuous Marine Habitat (CoMaH) hypothesis explaining MCE endemism rates looks like the most plausible explanation of the historic events that shaped the current marine environments of the PMNM. CoMaH hypothesis supports the idea that the MCE habitat is able to endure the large fluctuations and rapid increase of sea level providing a continuous habitat for marine organisms to evolve into endemic species.

Description

Keywords

corals, coral reef ecology, sea level rise

Citation

Extent

49 pages

Format

Geographic Location

Time Period

Related To

Related To (URI)

Table of Contents

Rights

All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.