Automated reasoning and machine learning

Date
1996
Authors
Huang, Guoxiang
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
This dissertation introduces new theorem-proving strategies and uses these strategies to solve a wide variety of difficult problems requiring logical reasoning. It also shows how to use theorem-proving to solve the problem of learning mathematical concepts. Our first algorithm constructs formulas called Craig interpolants from the refutation proofs generated by contemporary theorem-provers using binary resolution, paramodulation, and factoring. This algorithm can construct the formulas needed to learn concepts expressible in the full first-order logic from examples of the concept. It can also find sentences which distinguish pairs of nonisomorphic finite structures. We then apply case analysis to solve hard problems such as the zebra problem, the pigeonhole problem, and the stable marriage problem. The case analysis technique we use is the first to be fully compatible with resolution and rewriting and powerful enough to solve these problems. Our primary new theorem-proving strategies generate subgoals and efficient sets of rules. We show how to divide problems into smaller parts with intermediate goals by reversing logical implications. We solve these subdivided parts by discovering efficient subsets of rules or by generating efficient new rules. We apply these and other new search strategies to solve difficult problems such as the 15-puzzle, central solitaire, TopSpin, Rubik's cube, and masterball. Our strategies apply universally to all such problems and can solve them quite efficiently: the 15-puzzle, Rubik's cube and masterball can all be done in 300 seconds. Finally we apply our search strategies to solve real-world problems such as sorting, solving equations and inverting nonsingular matrices.
Description
Thesis (Ph. D.)--University of Hawaii at Manoa, 1996.
Includes bibliographical references (leaves 140-144).
Microfiche.
x, 144 leaves, bound ill. 29 cm
Keywords
Automatic theorem proving, Logic, Symbolic and mathematical, Artificial intelligence
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Mathematics; no. 3315
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.