Understanding Shared Familiarity and Team Performance through Network Analytics

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

In this article, we propose a network approach to understanding team knowledge with archival data, offering conceptual and methodological advantages. Often, the degree to which team members’ possess shared knowledge has been conceptualized and measured as an aggregate property of a team as a whole. Rather than an aggregate property, however, we argue that shared team knowledge is more appropriately conceptualized as a network of knowledge overlaps or linkages between sets of team members. We created shared knowledge networks for a sample of 1,942 software teams based on members’ prior experiences working with one another on different tasks and teams. We included metrics representing topological features of team shared knowledge networks within predictive models of team performance. Our results suggest that network patterning provides additional predictive power for explaining software development team performance over and above the effects of average level of knowledge similarity within a team.

Description

Keywords

Knowledge Economics, Team knowledge, team familiarity, task familiarity, shared familiarity, team performance

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.