Adversarial Cognitive Engineering (ACE) and Defensive Cybersecurity: Leveraging Attacker Decision-Making Heuristics in a Cybersecurity Task

Date
2024-01-03
Authors
Johnson, Chelsea
Van Tassel, Richard W.
Shade, Temmie
Rogers, Andrew
Ferguson-Walter, Kimberly
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
974
Ending Page
Alternative Title
Abstract
The role of cyberspace continues to expand, touching nearly every aspect in our lives. Critical information, when stolen, can be devastating to a nation’s people, economy, and security. To defend against this threat, it is essential to understand the human behind the attack. A first step in developing new defenses where human attackers are involved is obtaining valid and reliable human performance and decision-making data. These data can be procured through rigorous human science research that experimentally evaluates foundational theory and measures human performance. Taking the key concepts from behavioral economics, the game-based testbed, CYPHER, was specifically designed to test the occurrence of the Sunk Cost Fallacy across multiple decisions in an abstract cyber environment. Evaluating decisions made over a series of actions to catch a fictitious cyber thief, we analyze the effects of two antecedents (uncertainty and project completion) and resource expenditure. Our results show that irrespective of condition, significantly more participants unnecessarily wasted resources, demonstrating behavior consistent with the Sunk Cost Fallacy. These data provide a baseline upon which to build artificial intelligence algorithms for automated cyber defense.
Description
Keywords
Cyber Deception and Cyberpsychology for Defense, cognitive engineering, cybersecurity, decision-making heuristics, sunk cost fallacy
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 57th Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.