Omega function: a theoretical introduction

Date

2009

Contributor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

University of Hawaii at Manoa

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper investigates the theory behind a new universal performance measure (the so called Omega function), which was frst introduced by Con Keating and William F. Shadwick in 2002 (see [1]). In the frst section, we review some rudimentary probability. We then defne the Omega function, introduce some of its properties, and prove these properties without continuity assumptions. We also defne the standard dispersion, a new statistic derived from the Omega function. We prove one new theorem about the range of the standard dispersion for a fnite sample. The structure of the second section on the Omega function follows closely that of a recent talk given by Ana Cascon and William Shadwick in [4]. In the last section, we demonstrate these properties with real-life data.

Description

Plan B paper, M.A., Mathematics, University of Hawaii at Manoa, 2009

Keywords

Citation

Extent

28 pages

Format

Geographic Location

Time Period

Related To

Related To (URI)

Table of Contents

Rights

All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.