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Abstract. This paper investigates the theory behind a new uni-
versal performance measure (the so called Omega function), which
was first introduced by Con Keating and William F. Shadwick in
2002 (see [1]). In the first section, we review some rudimentary
probability. We then define the Omega function, introduce some
of its properties, and prove these properties without continuity as-
sumptions. We also define the standard dispersion, a new statistic
derived from the Omega function. We prove one new theorem
about the range of the standard dispersion for a finite sample.
The structure of the second section on the Omega function fol-
lows closely that of a recent talk given by Ana Cascon and William
Shadwick in [4]. In the last section, we demonstrate these proper-
ties with real-life data.
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1. Preliminaries

In this section, we will recall some fundamental concepts of Prob-
ability Theory. For a more proper and complete measure-theoretic
introduction, the reader is referred to the book titled Probability with
Martingales by David Williams (see [11]).
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Definition 1.1. A probability space is a non-negative measure space
such that the measure of the whole space is equal to 1.

In other words, a probability space is a triple (Ω,F ,P) where

• Ω, called the sample space, is a non-empty set. A point ω of Ω
is called a sample point.
• F , called the family of events, is a σ-algebra on Ω. An event is

an element of F ; that is, an F -measurable subset of Ω,
• P is a probability measure on (Ω,F).

Example 1.2. Toss a coin twice.
Our sample space Ω = {HH,HT, TH, TT} consists of all the possible
outcomes when tossing a coin twice. Set F := P(Ω) = the powerset
of Ω. In this example, the event “At least one head is obtained” is the
element {HH,HT, TH} ∈ F .

Example 1.3. Choose a point between 0 and 1 uniformly at random.
We take Ω = [0, 1],F = B[0, 1], and ω signifying the point chosen. In
this case, we can take P = Leb. Here, B[0, 1] is the collection of the
Borel subsets of [0, 1] and Leb is the usual Lebesgue measure on R.

Definition 1.4. Let (Ω,F ,P) be a probability space. A random vari-
able is an element of mF , the set of functions X : Ω → R such that
X−1(B) ∈ F for all Borel subsets 1 B ⊂ R. In symbols, let B be the
σ-algebra of Borel subsets of R then, for X ∈ mF ,

X : Ω→ R, X−1 : B → F .

Definition 1.5. Let (Ω,F ,P) be a probability space. The cumulative
distribution function (CDF), or just distribution function, of a real-
valued random variable X is given by FX(x) = P(X ≤ x),∀x ∈ R.

The reader can find a more detailed description of a cumulative dis-
tribution function in [11].

Definition 1.6. A random variable X is called constant if X(ω) = c
for all ω ∈ Ω, where c ∈ R.

Example 1.7. The cumulative distribution function for the constant
random variable X(ω) = c is

FX(x) =

{
0, if x < c,

1, if x ≥ c.

We call the CDF of a constant random variable a point-mass CDF.

1The Borel σ-algebra of R, B = σ(π(R)), is the σ-algebra generated by the
π-system on R, where π(R) := {(−∞, x] : x ∈ R}. See [11].
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Definition 1.8. A random variable X is discrete if and only if there is
a finite sequence {xi}Ni=1 or an infinite sequence {xi}∞i=1 of distinct real
numbers such that

N∑
i=1

P(X = xi) = 1 or
∞∑
i=1

P(X = xi) = 1,

respectively. When X is discrete, the probability mass function is the
function ρX : R→ [0, 1] such that

ρX(x) = P(X = x), ∀x ∈ R.

Example 1.9. The possible events for a coin toss are heads or tails,
thus Ω = {H,T}. The number of heads appearing in one toss can be
described using the following random variable:

X(ω) =

{
0, if ω = T ,

1, if ω = H.

This is an example of a discrete random variable.
If the coin is fair, then the probability mass function ρX : R → [0, 1]
for X is defined as

ρX(x) = P(X = x) =

{
1
2
, if x ∈ {0, 1},

0, if x /∈ {0, 1}.

The CDF FX for this random variable is

FX(x) =


0, if x < 0,
1
2
, if 0 ≤ x < 1,

1, if x ≥ 1.
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Figure 1. The probability mass function ρX and cumu-
lative distribution function FX
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Definition 1.10. A random variable X is continuous if FX is a con-
tinuous function. A random variable X is absolutely continuous if FX
is an absolutely continuous function.

If X is an absolutely continuous random variable, then X has prob-
ability density function fX where

P(a < X ≤ b) =

∫ b

a

fX(t)dt = FX(b)− FX(a).

Example 1.11. For absolutely continuous random variables, note that
P(X = x) = 0 for all x ∈ R. A random variable X with the uniform
distribution U(a, b) is one such example of an absolutely continuous
random variable. The probability density function fX of X is given as

fX(x) =

{
1
b−a , for x ∈ [a, b],

0, for x /∈ [a, b].

And the CDF is

FX(x) =


0, for x < a,
x−a
b−a , for a ≤ x < b,

1, for x ≥ b.
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Figure 2. The probability density function fX and cu-
mulative distribution function FX for the standard uni-
form distribution U(0, 1)

Proposition 1.12. Suppose that F is the cumulative distribution func-
tion of some random variable X. Then

CDF1: F : R→ [0, 1]
CDF2: F (x) ≤ F (y),∀x ≤ y (F is non-decreasing)
CDF3: limx→−∞ F (x) = 0, limx→+∞ F (x) = 1
CDF4: F is right-continuous

Remark 1.13. In fact, F is the CDF of a random variable if and only
if F satisfies CDF1 through CDF4 (see Theorem 3.11 in [11]).
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Proof.

CDF1: This is clear from the definition, as the image of FX is
contained in the image of P.

CDF2: Suppose that x ≤ y,

F (y)− F (x) = P(X ≤ y)− P(X ≤ x)

= P(X ≤ x) + P(x < X ≤ y)− P(X ≤ x)

= P(x < X ≤ y)

≥ 0.

CDF3: By CDF2, limx→−∞ F (x) = limn→−∞ F (n) where n ∈ Z.
By Lemma 1.10b of [11],

lim
n→−∞

F (n) = lim
n→−∞

P(X ≤ n) = P(∅) = 0.

Similarly, by Lemma 1.10a of [11],

lim
x→∞

F (x) = lim
n→∞

F (n) = lim
n→∞

P(X ≤ n) = P(Ω) = 1.

CDF4: Another application of Lemma 1.10 of [11],

lim
a→0+

FX(x+ a) = lim
n→∞

P(X ≤ x+
1

n
) = P(X ≤ x) = FX(x).

�

Definition 1.14. The non-trivial domain of a cumulative distribution
function F is the interior of {x | 0 < F (x) < 1}.

This definition is not in any of the papers on the Ω function listed in
the reference page. Its motivation will be discussed in greater detail in
the next section (see Remark 2.5).

Lemma 1.15. The non-trivial domain of a cumulative distribution
function is either empty or is equal to (A,B) where −∞ ≤ A < B ≤ ∞.
Proof. Let D denote the non-trivial domain. Suppose that D 6= ∅.
Since D is open and non-empty, it contains more than one point. Sup-
pose that x1, x2 ∈ D and x1 < x2. Let y ∈ (x1, x2). Since F is non-
decreasing, we have

0 < F (x1) ≤ F (y) ≤ F (x2) < 1.

So y ∈ {x | 0 < F (x) < 1}, hence (x1, x2) ⊆ {x | 0 < F (x) < 1}. Since
the interior of a set is the union of all its open subsets, (x1, x2) ⊆ D.
Because x1 and x2 are chosen arbitrarily, D is an interval. Since it is
an open set, it is an open interval. �

For examples 1.9 and 1.11, the non-trivial domains are (0, 1) and
(a, b) respectively.



6 VU NGOC NGUYEN

Lemma 1.16. The non-trivial domain is empty if and only if F is a
point-mass CDF.

Proof. (⇐) Obvious. Conversely, suppose that the non-trivial domain
is empty and F is not a point-mass CDF. Then there exists c ∈ R such
that 0 < F (c) < 1. Since F is right continuous, for any ε > 0, there
exists δ > 0 such that 0 ≤ F (x) − F (c) < ε, for all x ∈ [c, c + δ). Set
ε = Min(F (c), 1− F (c)), we have a contradiction. �

We say that a random variable X has finite mean if and only if∑
i |xi| ρ(xi) < ∞ (for discrete X) or

∫∞
−∞ |x| f(x)dx < ∞ (for abso-

lutely continuous X) (see pp. 68-69 of [11]). If X has finite mean, then
the expected value (or the mean) of X is defined as E(X) =

∑
i xi ρ(xi)

or E(X) =
∫∞
−∞ x f(x)dx.

Lemma 1.17. Let F be a CDF with a finite mean. Then for any a ∈ R,∫ a

−∞
F (t)dt =

∫ a

−∞
(a− x)dF (x) <∞

and ∫ ∞
a

[1− F (t)]dt =

∫ ∞
a

(x− a)dF (x) <∞.

Proof. Let ρ be the probability measure on R that is induced by F . Let
τ = m× ρ on R2 where m is Lebesgue measure. Let P = {(t, x) | x ≤
t ≤ a}. By Tonelli’s Theorem,

τ(P ) =

∫
(−∞,a]

(∫
[x,a]

1 dm(t)

)
dρ(x)

=

∫
(−∞,a]

m([x, a])dρ(x)

=

∫
(−∞,a]

(a− x)dF (x)

< ∞.
Because the last integrand above, (a − x)dF (x), is zero for x = a, the
last integral can be written as

∫ a
−∞(a − x)dF (x) without ambiguity.

Another application by Tonelli’s Theorem gives

τ(P ) =

∫
(−∞,a]

(∫
(−∞,t]

1 dρ(x)

)
dm(t)

=

∫
(−∞,a]

ρ((−∞, t])dm(t)

=

∫ a

−∞
F (t)dt.
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Let Q = {(t, x) | a ≤ t < x}. Then

τ(Q) =

∫
(a,∞)

m([a, x))dρ(x) =

∫
(a,∞)

(x− a)dF (x) <∞.

Again, because the integrand (x − a)dF (x) is zero for x = a, we can
write the last integral as

∫∞
a

(x−a)dF (x) without ambiguity. We apply
Tonelli’s Theorem again to obtain

τ(Q) =

∫ ∞
a

ρ((t,∞))dm(t) =

∫ ∞
a

(1− F (t))dm(t).

�
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2. The Omega Function

We are now ready for the main definition of this paper.

Definition 2.1. If F is a cumulative distribution with non-trivial do-
main (A,B) and if F has finite mean µ then the Omega function, Ω, of
F is defined as

Ω(x) =
I1(x)

I2(x)

for x ∈ (A,B), where

I1(x) =

∫ x

A

F (t)dt =

∫ x

−∞
(x− t)dF (t)

and

I2(x) =

∫ B

x

[1− F (t)]dt =

∫ ∞
x

(t− x)dF (t)

for all x ∈ R.

By Lemma 1.17, I1(x) and I2(x) are finite for all x ∈ R. For x ∈
(A,B), the non-trivial domain, I1(x) > 0 and I2(x) > 0.
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Figure 3. The Omega Ratio

Note 2.2. Many papers in the literature, such as [1, 2, 3, 4, 6, 7, 8, 9, 10],
define Ω = I2

I1
. The current definition is in agreement with [4], which

inspired this paper.
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The following theorem will establish some properties of the Omega
function.

Theorem 2.3. Suppose that F is a CDF with finite mean µ and non-
trivial domain (A,B) 6= ∅.

OF1: I1, I2 are Lipschitz continuous on R.
OF2: Ω is continuous on (A,B).
OF3: Ω is strictly increasing on (A,B).
OF4: limx→A+ Ω(x) = 0 and limx→B− Ω(x) =∞.
OF5: Image(Ω) = (0,∞).
OF6: I2(x)− I1(x) = µ− x for x ∈ R.
OF7: Ω(x) = 1 + x−µ

I2(x)
for x ∈ (A,B), and Ω(µ) = 1.

OF8: Ω′(µ+) = 1
I2(µ)

, where Ω′(µ+) denotes the right-hand deriv-

ative of Ω at µ.

Proof.

OF1: Since 0 < F (x) < 1, ∀x ∈ (A,B),

|I1(x2)− I1(x1)| =
∣∣∣∣∫ x2

x1

F (x)dx

∣∣∣∣ ≤ ∣∣∣∣∫ x2

x1

dx

∣∣∣∣ = |x2 − x1| ,

and, since 0 < 1− F (x) < 1, ∀x ∈ (A,B),

|I2(x2)− I2(x1)| =
∣∣∣∣∫ x2

x1

(1− F (x))dx

∣∣∣∣ ≤ ∣∣∣∣∫ x2

x1

dx

∣∣∣∣ = |x2 − x1| .

OF2: Obviously, since I1, I2 are continuous and I2 > 0 on (A,B),
so is their quotient I1

I2
.

OF3: From their definitions, it is easy to see that I1 is strictly
increasing on (A,B), and I2 is strictly decreasing on (A,B).
So, for A < x1 < x2 < B,

I1(x1) < I1(x2) and I2(x1) > I2(x2).

Thus,

Ω(x1) =
I1(x1)

I2(x1)
<
I1(x2)

I2(x2)
= Ω(x2).

OF4: Let c ∈ (A,B). Since I2(x) is a decreasing function, for all

x ∈ (A, c), 0 < Ω(x) = I1(x)
I2(x)

< I1(x)
I2(c)

. We only need to show that

limx→A+ I1(x) = 0. However, because I1(A) =
∫ A
A
F (t)dt = 0

and I1(x) is continuous on R (by OF1), it must be the case that
limx→A+ I1(x) = 0. Thus, limx→A+ Ω(x) = 0.
Since I1(x) is an increasing function, for all x ∈ (c, B), Ω(x) =
I1(x)
I2(x)

> I1(c)
I2(x)

. We want to show that limx→B− I2(x) = 0. This
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is also true, because I2(B) = 0 and I2(x) is continuous on R.
Hence, limx→B− Ω(x) =∞.

OF5: By OF2, OF3 and OF4.
OF6: By Lemma 1.17,

I2(x)− I1(x) =

∫ ∞
x

(t− x)dF (t)−
∫ x

−∞
(x− t)dF (t)

=

∫
(−∞,x]

(t− x) dF (t)−
∫

(x,∞)

(x− t) dF (t)

=

∫ ∞
−∞

tdF (t)− x
∫ ∞
−∞

dF (t)

= µ− x
OF7: We first show that µ ∈ (A,B). Suppose that −∞ < µ <

A < B ≤ ∞. Then I1(µ) = 0 and, by OF6, I2(µ) =
∫ B
µ

1 −
F (t) dt = 0. But this is a contradiction since 1 − F (x) > 0 for
all x ∈ (A,B). A similar contradiction arises if −∞ ≤ A <
B < µ <∞. Thus µ ∈ (A,B).

From the definition of Ω(x) and by OF6,

Ω(x) =
I1(x)

I2(x)
=

I2(x)

I2(x)
+
I1(x)− I2(x)

I2(x)

= 1 +
x− µ
I2(x)

.

Consequently, Ω(µ) = 1 + µ−µ
I2(µ)

= 1.

OF8: We first show that the right derivatives of I1(x) and I2(x)
are equal to F (x) and F (x)− 1, respectively.

lim
h→0+

I1(x+ h)− I1(x)

h

= lim
h→0+

∫ x+h

A
F (t)dt−

∫ x
A
F (t)dt

h

= lim
h→0+

∫ x+h

x
F (t)dt

h

= lim
h→0+

∫ x+h

x
[F (t)− F (x) + F (x)]dt

h

= lim
h→0+

∫ x+h

x
[F (t)− F (x)]dt

h
+ F (x) · lim

h→0+

∫ x+h

x
dt

h

= lim
h→0+

∫ x+h

x
[F (t)− F (x)]dt

h
+ F (x).
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Since F is right continuous, for any ε > 0, there exists δ > 0
such that 0 ≤ F (t)− F (x) < ε whenever 0 ≤ t− x < δ. Thus,
for all 0 < h < δ

0 ≤ lim
h→0+

∫ x+h

x
[F (t)− F (x)]dt

h
< lim

h→0+

∫ x+h

x
ε dt

h

= ε · lim
h→0+

∫ x+h

x
dt

h
= ε.

Since ε is arbitrary, limh→0+

∫ x+h
x [F (t)−F (x)]dt

h
= 0. So, I ′1(x+) =

F (x).
A similar argument gives I ′2(x+) = F (x)− 1. Hence

Ω′(x+) =
I ′1(x+)I2(x)− I1(x)I ′2(x+)

I2
2 (x)

=
F (x)I2(x)− I1(x)[F (x)− 1]

I2
2 (x)

=
[I2(x)− I1(x)]F (x) + I1(x)

I2
2 (x)

.

Thus, by OF7,

Ω′(µ+) =
[I2(µ)− I1(µ)]F (µ) + I1(µ)

I2(µ)2
=

1

I2(µ)
.

�

Proposition 2.4. The Ω function has left and right derivatives at all
x in (A,B) and

Ω′(x+)− Ω′(x−) =
[F (x)− F (x−)][I2(x)− I1(x)]

I2(x)2

Here F (x−) denotes the left limit at x.

Proof. Since F is non-decreasing and right-continuous, F has a left
limit on R (i.e., F (x−) exists and is finite for all x ∈ R).
Follow the same arguments in OF8 of the previous theorem; the left
derivatives of I1(x) and I2(x) are F (x−) and F (x−) − 1, respectively.
And thus the left derivative of Ω(x) is

Ω′(x−) =
[I2(x)− I1(x)]F (x−) + I1(x)

I2(x)2
.
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Consequently,

Ω′(x+)− Ω′(x−)

=
[I2(x)− I1(x)]F (x) + I1(x)

I2(x)2
− [I2(x)− I1(x)]F (x−) + I1(x)

I2(x)2

=
[F (x)− F (x−)][I2(x)− I1(x)]

I2(x)2

�

Remark 2.5. It is worth mentioning the motivation for definition 1.14
(the non-trivial domain), which is also the domain of our Ω function.
Consider a point-mass CDF F where, for some c ∈ R, F (x) = 0 if
x < c, and F (x) = 1 otherwise. The non-trivial domain of F is the
empty set. According to definition 2.1, we have

I1,F (x) =

{
0, if x ≤ c,

x− c, if x ≥ c,

and

I2,F (x) =

{
c− x, if x ≤ c,

0, if x ≥ c.

Then
I1,F (x)

I2,F (x)
is maximally defined on (−∞, c), but is 0 for all x ∈

(−∞, c).
In Example 1.9, a maximal choice for a domain for

I1,F (x)

I2,F (x)
is (−∞, 1),

in which case

I1,F (x)

I2,F (x)
=

{
0, if x ≤ 0,
x

1−x , if 0 ≤ x < 1.

If we were to use [0, 1) as the domain for Ω, the range of Ω will be
[0,∞). If we use (0, 1), the range is (0,∞).

The last example deals with the case of a continuous CDF. Consider
the probability density function f(x) = 1√

2π
exp(−x2

2
) for the normal

distribution with mean 0 and standard deviation 1. The non-trivial
domain for its CDF is (−∞,∞) and the range of the corresponding Ω
is (0,∞).

We want to define Ω so that its domain is the largest among the
choices of intervals where I1

I2
make sense. We also want the range of Ω to

be predetermined, preferably (0,∞). The interior of {x | 0 < F (x) < 1}
comes up as the best choice.
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Corollary 2.6. Let F be a CDF with non-trivial domain (A,B) 6= ∅,
finite mean µ and Ω function Ω(x). Then, for x ∈ (A,B) \ {µ},

F (x) = 1 +
1

Ω(x)− 1
+

(µ− x)Ω′(x+)

(Ω(x)− 1)2
.

Proof. By OF6 and OF8 of Theorem 2.3,

Ω′(x+) =
(I2(x)− I1(x))F (x) + I1(x)

I2
2 (x)

=
(µ− x)F (x) + I1(x)

I2
2 (x)

=
(µ− x)F (x)

I2
2 (x)

+
I1(x)

I2
2 (x)

⇐⇒ (µ− x)F (x) = I2
2 (x)Ω′(x+)− I1(x)

⇐⇒ (µ− x)F (x) = I2
2 (x)Ω′(x+) + (I2(x)− I1(x))− I2(x)

⇐⇒ (µ− x)F (x) = I2
2 (x)Ω′(x+) + (µ− x)− I2(x).

So, for x 6= µ,

F (x) = 1− I2(x)

µ− x
+
I2

2 (x)Ω′(x+)

µ− x
Since Ω is strictly increasing and Ω(µ) = 1, by OF3 and OF8 of Theo-

rem 2.3 , we have x 6= µ⇒ Ω(x) 6= 1. Therefore, I2(x)
µ−x = 1

1−Ω(x)
by OF7

of the same theorem. Consequently,

F (x) = 1− I2(x)

µ− x
+

(µ− x)I2
2 (x)Ω′(x+)

(µ− x)2

= 1 +
1

Ω(x)− 1
+

(µ− x)Ω′(x+)

(Ω(x)− 1)2
.

�

Corollary 2.7. Let F,G be CDFs with finite means and non-empty
non-trivial domains and let ΩF ,ΩG be their Omega functions, respec-
tively. Then, F = G if and only if ΩF = ΩG.

Proof. (⇒) is obvious. Conversely, suppose that ΩF = ΩG. Because
ΩF = ΩG, their domains are equal. And since their domains are the
non-trivial domains of F and G, respectively, the latter two are equal.
Let (A,B) be the common non-trivial domain for F and G. Note that
µF = Ω−1

F (1) = Ω−1
G (1) = µG. So let µ denote the common mean. By

Corollary 2.6, F (x) = G(x) for all x ∈ (A,B)\{µ}. But since F and G
are right-continuous, F (µ) = G(µ). So F (x) = G(x) for all x ∈ (A,B).
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For x < A, F (x) = G(x) = 0 by the definition of non-trivial domain.
Likewise, for x > B we have F (x) = G(x) = 1. Because A < B, if A is
finite the right continuity of F and G gives us F (A) = G(A). Likewise,
F (B) = G(B) if B is finite. Thus F (x) = G(x) for all real x. �

Definition 2.8. Given a cumulative distribution function F with fi-
nite mean and that is not a point-mass CDF (cf. Example 1.7) with
associated ΩF function, the standard dispersion, denoted by ωF , is

ωF =
1

Ω′F (µ+)
.

By OF8 and OF9 of Theorem 2.3, we have ωF = I2,F (µ) = I1,F (µ). For
point-mass CDFs, we set ωF = 0.

Proposition 2.9. Let F be a cumulative distribution function with
finite mean µ and non-empty non-trivial domain. The standard disper-
sion ω can be defined directly from F as

ωF =
1

2
EF (|µ− x|).

Here EF is the expectation with respect to the F -induced probability
measure ρ on the Borel σ-algebra B of R.

Proof. By Lemma 1.17 and OF9 of Theorem 2.3, we have

ωF = I2(µ) =

∫ ∞
µ

[1− F (x)] dx =

∫ ∞
µ

(t− µ)dF (t)

and

ωF = I1(µ) =

∫ µ

−∞
F (x) dx =

∫ µ

−∞
(µ− t) dF (t).

Because µ− t = 0 when t = µ,

ωF =
1

2

(∫ µ

−∞
(µ− t)dF (t) +

∫ ∞
µ

(t− µ)dF (t)

)
=

1

2

(∫
(−∞,µ]

(µ− t)dF (t) +

∫
(µ,∞)

−(µ− t)dF (t)

)
=

1

2

(∫
(−∞,µ]

|µ− t| dF (t) +

∫
(µ,∞)

|µ− t| dF (t)

)
=

1

2

(∫ ∞
−∞
|µ− t| dF (t)

)
=

1

2
EF (|µ− t|).

�
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Proposition 2.9 shows that the standard dispersion ω measures the
variability of a set about its mean. The higher the concentration around
the mean, the lower is ω (and the higher the value of Ω′(µ+)). Figure
4 illustrates this fact with two normally distributed sets B(lue) and
P(urple) where µB = µP = 0, σB = 1 and σP = 0.5.
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Figure 4. Normal Distributions B and P and their as-
sociated Ω functions

Proposition 2.10. If two CDFs F and G have the same finite mean
µ, then ∫ ∞

−∞
(F (x)−G(x))dx = 0.

Furthermore, if they have the same ω, then∫ µ

−∞
(F (x)−G(x))dx = 0 and

∫ ∞
µ

(F (x)−G(x))dx = 0.

Proof. Let µ denote the common mean of F and G. Because we can
add or subtract absolutely convergent, improper integrals we have

I1,F (µ)− I1,G(µ) =

∫ µ

−∞
(F (x)−G(x)) dx

and

I2,G(µ)− I2,F (µ) =

∫ ∞
µ

((1−G(x))− (1− F (x))) dx

=

∫ ∞
µ

(F (x)−G(x)) dx.
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Recall that, for any distribution F having finite mean µ and non-
empty non-trivial domain, I2,F (µ) = I1,F (µ). We have

0 = (I1,F (µ)− I2,F (µ)) + (I2,G(µ)− I1,G(µ))

= (I1,F (µ)− I1,G(µ)) + (I2,G(µ)− I2,F (µ))

=

∫ µ

−∞
(F (x)−G(x)) dx+

∫ ∞
µ

(F (x)−G(x)) dx

=

∫ ∞
−∞

(F (x)−G(x)) dx.

If, in addition, they have the same ω, then ω = I1,F (µ) = I2,F (µ) =
I1,G(µ) = I2,G(µ) and the claim is obvious. �

Theorem 2.11. (Addition formula) Let {Fi}ni=1 be a collection of CDFs
where each Fi has finite mean µi and standard dispersion ωi. Let F =∑n

i=1 aiFi where each ai ≥ 0, and
∑n

i=1 ai = 1. Then F is a CDF for
some random variable with finite mean

µ =
n∑
i=1

aiµi.

The standard dispersion ω of F can be calculated as

ω =
n∑
i=1

aiωi +
n∑
i=1

ai

∫ µ

µi

Fi(x)dx.

Proof. We first show that F is the CDF of some random variable. Since
∑n

i=1 aiµi =
∑n

i=1,ai 6=0 aiµi,∑n
i=1 aiωi =

∑n
i=1,ai 6=0 aiωi,∑n

i=1 ai
∫ µF

µi
Fidx =

∑n
i=1,ai 6=0 ai

∫ µF

µi
Fidx,∑n

i=1,ai 6=0 ai = 1,

we may assume that ai > 0 for all i. Thus

(1) limx→+∞ F (x) =
∑n

i=1 ai limx→+∞ Fi(x) =
∑n

i=1 ai · 1 = 1,
(2) limx→−∞ F (x) =

∑n
i=1 ai limx→−∞ Fi(x) =

∑n
i=1 ai · 0 = 0,

(3) For x ≤ y, F (x) =
∑n

i=1 aiFi(x) ≤
∑n

i=1 aiFi(y) = F (y),
(4) because Fi is right-continuous on R for i = 1, 2, . . . , n, F is also

right-continuous on R.

By Theorem 3.11 in [11], F is the CDF of some random variable.
We then show that F has finite mean (i.e.

∫∞
−∞ |x| dF (x) <∞). Let

ρi be the probability measure induced on the Borel σ-algebra of R by
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Fi, for i = 1, . . . , n. Let ρ be the corresponding probability measure
induced by F . For x ∈ R, we have

ρ((−∞, x]) = F (x)

=
n∑
i=1

aiFi(x)

=
n∑
i=1

aiρi((−∞, x]).

Thus ρ =
∑n

i=1 aiρi on sets of the form (−∞, x], for all x ∈ R. By the
corollary on page 19 of [11], ρ =

∑n
i=1 aiρi on the Borel σ-algebra B of

R. Hence ∫ ∞
−∞
|x| dF (x) =

∫ ∞
−∞
|x| dρ(x)

=

∫ ∞
−∞
|x|

n∑
i=1

aidρi(x)

=
n∑
i=1

ai

∫ ∞
−∞
|x| dρi(x)

=
n∑
i=1

ai

∫ ∞
−∞
|x| dFi(x)

< ∞.

Consequently,

µ =

∫ ∞
−∞

x dF (x)

=
n∑
i=1

ai

∫ ∞
−∞

x dFi(x)

=
n∑
i=1

aiµi.

Suppose first that F is a point-mass CDF (i.e., for some c ∈ R, F (x) = 0
if x < c and F (x) = 1 otherwise). Then a direct argument shows that
for each i, Fi = F . In this case, ω = 0 and ωi = 0 for all i. So trivially,∑n

i=1 aiωi = 0 = ω.
Now assume that F is not a point-mass CDF, then its non-trivial do-
main (A,B) 6= ∅. Let (Ai, Bi) be the non-trivial domain of Fi, for each
i. We want to show that (Ai, Bi) ⊆ (A,B).
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Suppose x ∈ (Ai, Bi), then F (x) ≥ aiFi(x) > 0. Also,

F (x) =
n∑
i

aiFi(x) ≤
n∑
j 6=i

aj + aiFi(x) <
n∑
i

ai = 1.

Thus (Ai, Bi) ⊆ {x ∈ R | 0 < F (x) < 1}. But (Ai, Bi) is an open set,
hence (Ai, Bi) ⊆ Int{x ∈ R | 0 < F (x) < 1} = (A,B) for i = 1, . . . , n.

Note that Fi(x) = 0 for x ∈ (A,Ai), so
∫ Ai

A
Fi(x)dx = 0. We then have,

ω = I1(µ) =

∫ µ

A

F (x)dx =

∫ µ

A

n∑
i=1

aiFi(x)dx

=
n∑
i=1

ai

∫ µ

Ai

Fi(x)dx

=
n∑
i=1

ai

(∫ µi

Ai

+

∫ µ

µi

)
Fi(x)dx

=
n∑
i=1

ai

∫ µi

Ai

Fi(x)dx+
n∑
i=1

ai

∫ µ

µi

Fi(x)dx

=
n∑
i=1

aiωi +
n∑
i=1

ai

∫ µ

µi

Fi(x)dx.

�

The following theorem is new. It bounds the ratio of standard devi-
ation to standard dispersion (σ

ω
), which Shadwick and Cascon call the

first C-S character, in the context of an empirical CDF.

Theorem 2.12. Let x1, . . . , xn be data points. Set x̄ = 1
n

∑n
i=1 xi and

suppose that xi 6= x̄ for at least one i. Then

2 ≤

√
1
n

∑n
i=1(xi − x̄)2

1
2n

∑n
i=1 |xi − x̄|

≤
√

2n

Proof. (The following proof was suggested by Professor Thomas Ram-
sey.) Without loss of generality, we may assume x̄ = 0; that is x1 +
· · ·+ xn = 0. Fix D := 1

2n

∑n
i=1 |xi| > 0. We will maximize the square

of the numerator N := 1
n

∑n
i=1 x

2
i subjecting to these two constraints.

The two constraints are continuous functions on Rn, so the set S
satisfying both constraints is the intersection of two closed sets and
thus closed. Because D > 0, this closed set excludes (0, ..., 0). Also, for
each j,

|xj| ≤
∑
|xi| = 2nD.
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Thus, S ⊆ [−2nD, 2nD]n and thus bounded. As S is a closed and
bounded subset of Rn, it is compact. Since f(x1, . . . , xn) =

∑
x2
i is

continuous on Rn, the Extreme Value Theorem asserts the existence of
a maximum and a minimum in S. Let the maximum occur at x1, . . . , xn.
Let P = {i | xi > 0}, Q = {i | xi < 0}, and T = {i | xi = 0}. We claim
that the maximum of

∑
i x

2
i is bounded by n2D2.

Fix xi = 0 for i ∈ T . We will maximize
∑
x2
i subject to

∑
xi = 0 and

2nD =
∑

i∈P xi−
∑

i∈Q xi for i ∈ P ∪Q. Using the Lagrange multiplier

method (for more detail, see [5]), we have

∂N

∂xi
= λ1

∂(x1 + · · ·+ xn)

∂xi
+ λ2

∂
(∑

i∈P xi −
∑

i∈Q xi

)
∂xi

, i ∈ P ∪Q.

We obtain, {
2xi = λ1 + λ2 if i ∈ P,
2xi = λ1 − λ2 if i ∈ Q.

In particular, there exist constants a and b such that xi = a for all
i ∈ P , and xi = b for all i ∈ Q. Let p, q be the numbers of elements in
P,Q, respectively, then{

p · a+ q · b = 0,

p · a− q · b = 2nD.

This system has solution {
a = nD

p
,

b = −nD
q
.

Thus, ∑
i

x2
i = p · a2 + q · b2

= p · n
2D2

p2
+ q · n

2D2

q2

= n2D2

(
1

p
+

1

q

)
≤ n2D2

(
1

1
+

1

1

)
= 2n2D2,
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and so √
1
n

∑n
i=1 x

2
i

1
2n

∑n
i=1 |xi|

≤

√
1
n
2n2D2

D

=
√

2n.

By Hölder’s inequality, we have

1

2n

∑
|xi| ≤

1

2n

√√√√ n∑
i=1

12

√√√√ n∑
i=1

x2
i

=

√
n2

2n

√√√√ 1

n

n∑
i=1

x2
i

⇐⇒ 2 ≤

√
1
n

∑n
i=1 x

2
i

1
2n

∑n
i=1 |xi|

.

�

It has been shown that the first C-S characters of the Uniform, the
Normal, and the Laplace distributions are 4√

3
,
√

2π, and 2
√

2, respec-

tively. For a more detailed treatment of the first C-S character, see
[2, 3, 4].

Shadwick also introduced (see [4]) the analogues of the Markov and
Chebyshev inequalities for ω.

Lemma 2.13. Let X be a random variable with finite mean µ. For
every b > 0,

P(X − µ ≥ b) ≤ ω

b
.

Proof. Let F be the CDF for X. By Proposition 2.9, for every b > 0,

ω =

∫ ∞
µ

(t− µ)dF (t)

≥
∫

[µ+b,∞)

(t− µ)dF (t)

≥ b

∫
[µ+b,∞)

dF (t)

= b

(∫
(−∞,∞)

dF (t)−
∫

(−∞,µ+b)

dF (t)

)
= b (1− P(X < µ+ b))

= bP(X ≥ µ+ b).
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Thus, P(X − µ ≥ b) ≤ ω
b
. �

Lemma 2.14. Let X be a random variable with finite mean µ. For
every b > 0,

P (|X − µ| ≥ b) ≤ 2ω

b
.

Proof. Similarly,

ω =

∫ µ

−∞
(µ− t)dF (t)

≥
∫

(−∞, µ−b]
(µ− t)dF (t)

≥ b

∫
(−∞, µ−b]

dF (t)

= bP(X ≤ µ− b).
So, P(X − µ ≤ −b) ≤ ω

b
. Consequently, with the result from Lemma

2.13, we obtain

P(|X − µ| ≥ b) ≤ 2ω

b
.

�
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Figure 5. A more intuitive proof of lemmas 2.13 and 2.14
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3. Applications

In this section, we work with real data to demonstrate some of the
properties of the Ω function and its derived statistic, the standard dis-
persion ω. For a more thorough investigation on the applications of Ω,
refer to [2, 3, 6, 7].

3.1. Interpretation. Recall from Definition 2.1 that, for x ∈ (A,B),

I1(x) =

∫ x

A

F (t)dt =

∫ x

−∞
(x− t)dF (t)

and

I2(x) =

∫ B

x

[1− F (t)]dt =

∫ ∞
x

(t− x)dF (t).

The functions I1(x) and I2(x) may be interpreted as the probability
weighted loss and the probability weighted gain, respectively, at a cer-
tain level x. Then Ω(x), as the ratio of loss over gain, will give a
performance measure (see [6, 8, 9]). Furthermore, from the definition
of the standard dispersion,

ω =
1

Ω′(µ+)
=

1

2
E(|x− µ|)

we see that the Omega function of a riskier distribution (bigger ω) is
flatter (smaller Ω′(µ+)) than that of a less risky one, and vice versa
(smaller ω, bigger Ω′(µ+)). Figures 6 and 7 illustrate this observation
using three distributions.
The distributions used here have common mean 0. The blue graph is of
a normal distribution with standard deviation 0.5. The purple graph is
of another normal distribution with standard distribution 1. And the
olive graph is of a Laplace distribution with location parameter 0 and
scale parameter 0.5.
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Figure 6. Graphs of the probability density functions
(left) and cumulative distribution functions (right).
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Figure 7. Graphs of the Omega functions.

3.2. Sensitivity to Outliers. Outliers, which are extreme values to
the left or right, affect statistics. Here we compare the effect of outliers
on the standard dispersion ω to the effect on the standard deviation σ.

We consider the set MS of daily returns from Microsoft Corporation
stocks since January 1st, 2000.
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Figure 8. Histogram of Microsoft’s daily returns since
Jan. 1, 2000.
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The two statistics, standard deviation σMS and standard dispersion
ωMS, are 0.0250939 and 0.00774291, repectively. The outlier is a loss
of −0.48323 on February 18th of 2003, while the mean of this set of
returns is −0.000382191. After removing this outlier, the new statistics
are σMS′ = 0.0230086 and ωMS′ = 0.00764251. So,

|σMS − σMS′|
|σMS|

= 0.083099

whereas,
|ωMS − ωMS′ |
|ωMS|

= 0.0129672.

Observe that in this case, the percent change of the standard deviation
is about 6.4 times more affected than the percent change of the standard
dispersion.

We provide one more instance: the S&P 500 index since January
1, 1987 (this example was introduced in [4]). The biggest loss was on
October 19, 1987 and it was −0.204669, while the mean is 0.000252815.
The percent changes after removing the outlier are

|σSP − σSP′|
|σSP|

= 0.0262401

and
|ωSP − ωSP′ |
|ωSP|

= 0.00461926.

In this case, the standard deviation is, again, much more affected than
the standard dispersion. It is about 5.7 times more affected.

3.3. Portfolio Optimization. We provide here an example of Port-
folio Optimization using ω.

We will form a portfolio consisting of 5 different indices: IBM (Inter-
national Business Machines Corp.), MSFT (Microsoft Corporation),
VBMFX (Vanguard Total Bond Market Index), VGSIX (Vanguard
Specialized Port Inc.), VTSMX (Vanguard Total Stock Market Index).
The adjusted daily prices are obtained directly from the Mathematica
data server (using the function FinancialData, see [12]). We calculate
quarterly returns for each candidate based on these daily prices. Table
1 shows some characteristics of the quarterly returns.

We will optimize portfolios using 2 methods: (1) the mean-variance
method and (2) the mean-standard dispersion method. Considering
the mean return of a return distribution the reward, its variance and
standard dispersion the risk, we minimize the risk subject to a fixed
reward level.
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Name IBM MSFT VBMFX VGSIX VTSMX

Mean 0.04093 0.03436 0.01440 0.02228 0.01434

Min -0.37633 -0.32472 -0.03370 -0.55490 -0.37696

Max 0.35724 0.47662 0.04923 0.22689 0.17606

σ 0.15639 0.16009 0.01747 0.11164 0.09379

ω 0.06299 0.06048 0.00689 0.03841 0.03445
Table 1. Characteristics of return series of the candidates

In particular, let R1, . . . , Rn be the returns. We seek a solution S =
(a1, . . . , an) to:

(1) Minimizing Var(
∑n

i aiRi).
(2) Minimizing ω(

∑n
i aiRi).

Both subject to
∑n

i aiE(Ri) ≥ r, ai ≥ 0, and
∑n

i ai = 1.
We use the first 10 quarters to gain information for the calculation.

We then do a rebalance every 2 quarters afterward. In this scenario,
we assume that buying and selling can be done with no delay. Also,
buying and selling are done at the exact dates. And we always buy and
sell all the resouces we have at each moment. There are a total of 54
quarters, thus we have 23 portfolio rebalances.

Returns from each period of the two portfolios are very similar. At
the final period, the portfolio allocation lost 28.46% of the initial in-
vestment using the second method (minimizing standard dispersion ω).
This is a bit better compared to a loss of 32.03% using the first method
(minimizing variance σ2). Detailed portfolio allocations can be found
on the next 2 pages. For a more detailed discussion of portfolio opti-
mization, refer to [6].

Conclusion. In this paper, we properly set up a formal framework for
the Omega function. We show its properties, along with formal proofs,
and introduced a new theorem (see Theorem 2.12.)

There are some possible future directions to go from here. We need
algorithms to optimize portfolios using the Omega function. Further-
more, we want to look for an intuitive interpretation for the Addition
formula (see Theorem 2.11), and consequently, a portfolio optimization
method based on it. The first C-S character can be used in distri-
bution test. In the case of normality test, Dr. Thomas Ramsey has
run simulations to compare the first C-S character method against the
Kolmogorov-Smirnov method. The new method has shown some very
promising results.
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Portfolio Return %

IBM MSFT VBMFX VGSIX VTSMX Cum.

22.4 28.6 0.09 0.02 48.87 0 0

28.12 23.9 0.03 0.01 47.92 11.12 11.12

23.24 35.24 0.08 0. 41.42 -5.07 5.48

20.1 26.22 0.64 0.03 52.99 -9.3 -4.32

32.27 15.58 5.17 0.1 46.85 -9.5 -13.42

29.77 26.21 28.83 15.11 0.05 -3.54 -16.48

32.95 22.45 42.73 1.85 0. -13.34 -27.62

27.95 23.14 12.6 36.28 0. -5.8 -31.81

23.12 26.22 15.77 34.85 0.02 -5.09 -35.28

27.84 23.22 42.39 6.52 0. -5.05 -38.55

19.45 22.94 8.59 49. 0. -1.13 -39.24

17.62 16.77 5.48 60.11 0. 8.83 -33.87

12.62 18.91 15.92 52.52 0. 9.17 -27.81

11.22 16.74 20.32 51.7 0. 1.08 -27.03

5.37 14.93 25.62 54.06 0. 10.04 -19.7

5.42 14.29 27.28 52.95 0.02 9.73 -11.89

3.88 10.18 38.21 47.7 0.01 -0.33 -12.17

4.45 11. 33.83 50.64 0.06 5.09 -7.71

6.67 11.31 32.96 48.94 0.09 -2.71 -10.21

8.31 14.78 26.45 50.39 0.04 1.72 -8.67

16.17 10.49 26.63 46.68 0.01 9.15 -0.31

29.18 18.47 52.32 0.01 0. -35.79 -35.99

35.12 14.63 49.94 0.29 0. 6.18 -32.03
Table 2. Portfolios according to the first method
(Mean-Variance)
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Portfolio Return %

IBM MSFT VBMFX VGSIX VTSMX Cum.

14.88 35.94 2.07 0. 47.08 0 0

20.28 30.43 0. 0. 49.27 8.64 8.64

17.45 40.15 0.11 0.97 41.3 -2.9 5.5

17.3 28.35 0.02 0. 54.31 -9.8 -4.82

32.38 19.23 1.23 2.59 44.55 -10.67 -14.97

24.55 32.44 39.26 3.72 0. -2.78 -17.34

24.16 31.59 42.67 0.12 1.44 -13.4 -28.42

29.23 20.2 4.94 45.6 0. -5.66 -32.46

30.62 18.18 9.96 41.23 0. -5.29 -36.04

26.82 24.58 30.09 17.28 1.2 -4.54 -38.94

28.07 14.96 8.73 48.22 0. 0.15 -38.85

22.11 15.86 12.8 49.21 0. 9.2 -33.23

14.02 21.14 21.5 43.14 0.17 7.64 -28.12

15.76 14.93 23.18 45.58 0.52 1.24 -27.23

0.7 19.24 26.01 54.03 0. 9.67 -20.2

0.57 18.57 27.82 53.02 0. 10.09 -12.15

0. 13.91 38.52 47.55 0. -0.66 -12.73

0. 15.81 34.56 49.61 0. 4.76 -8.58

1.36 16.34 33.08 49.2 0. -2.76 -11.1

2.88 18.28 25.93 52.9 0. 2.97 -8.46

22.18 8.75 30.44 38.61 0. 8.82 -0.39

27.63 18.71 47.71 5.93 0. -33.06 -33.32

29.86 15.84 34.21 17.3 2.77 7.29 -28.46
Table 3. Portfolios according to the second method
(Min ω)
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