Nazarov reaction : development of an organocatalytic asymmetric cyclopentannelation

Date

2010-12

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

[Honolulu] : [University of Hawaii at Manoa], [December 2010]

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Five-membered carbocycles appear as subunits in many natural products of biological importance. The design and development of new chemical transformations to form five-membered rings is an important area of organic chemistry. The Nazarov reaction allows for the making of five-membered rings and is capable of installing multiple stereogenic centers through a single operation. This thesis describes some recent progress for this reaction. In Chapter 1, the Nazarov reaction is introduced. The mechanism of the traditional Nazarov cyclization will be described followed by a discussion of some of the recent advances in catalytic, asymmetric, and catalytic asymmetric cyclopentannelations. Some examples of Nazarov cyclizations used in the total syntheses of natural products are presented to illustrate the versatility and usefulness of this reaction. In Chapter 2, we discuss our progress towards an organocatalytic asymmetric Nazarov cyclization. Chiral nonracemic 1,2-diamines are investigated for reactivity with α-ketoenones to form products of the Nazarov cyclization. Although the process is not catalytic, a highly cooperative mechanism involving covalently bound intermediates is discovered. An asymmetric enamine-iminium ion mediated Nazarov cyclization is described. In the final chapter (Chapter 3), we demonstrate an organocatalytic asymmetric Nazarov cyclization. We hypothesize that a weaker, noncovalent catalyst along with a more reactive substrate could lead to a catalytic reaction. Bifunctional thiourea catalysts are shown to cyclize diketoester substrates with good to excellent enantioselectivities with nearly perfect diastereoselectivity. Enantioenriched cyclopentenones are formed with two new adjacent stereogenic centers, one of which is a quaternary center.

Description

M.S. University of Hawaii at Manoa 2010.
Includes bibliographical references.

Keywords

Nazarov cyclization

Citation

Extent

Format

Geographic Location

Time Period

Related To

Theses for the degree of Master of Science (University of Hawaii at Manoa). Chemistry.

Related To (URI)

Table of Contents

Rights

Rights Holder

Local Contexts

Collections

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.