Measuring the Interference Effect of Bots in Disseminating Opposing Viewpoints Related to COVID-19 on Twitter Using Epidemiological Modeling

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

2296

Ending Page

Alternative Title

Abstract

The activity of bots can influence the opinions and behavior of people, especially within the political landscape where hot-button issues are debated. To evaluate the bot presence among the propagation trends of opposing politically-charged viewpoints on Twitter, we collected a comprehensive set of hashtags related to COVID-19. We then applied both the SIR (Susceptible, Infected, Recovered) and the SEIZ (Susceptible, Exposed, Infected, Skeptics) epidemiological models to three different dataset states including, total tweets in a dataset, tweets by bots, and tweets by humans. Our results show the ability of both models to model the diffusion of opposing viewpoints on Twitter, with the SEIZ model outperforming the SIR. Additionally, although our results show that both models can model the diffusion of information spread by bots with some difficulty, the SEIZ model outperforms. Our analysis also reveals that the magnitude of the bot-induced diffusion of this type of information varies by subject.

Description

Keywords

Digital Methods, botometer, covid-19, epidemiological modeling, misinformation, social network analysis

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Collections

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.