Governance of artificial intelligence and personal health information

Date

2019

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Emerald

Volume

21

Number/Issue

3

Starting Page

280

Ending Page

290

Alternative Title

Abstract

Purpose – This paper aims to assess the increasing challenges to governing the personal health information (PHI) essential for advancing artificial intelligence (AI) machine learning innovations in health care. Risks to privacy and justice/equity are discussed, along with potential solutions. Design/methodology/approach – This conceptual paper highlights the scale and scope of PHI data consumed by deep learning algorithms and their opacity as novel challenges to health data governance. Findings – This paper argues that these characteristics of machine learning will overwhelm existing data governance approaches such as privacy regulation and informed consent. Enhanced governance techniques and tools will be required to help preserve the autonomy and rights of individuals to control their PHI. Debate among all stakeholders and informed critique of how, and for whom, PHI-fueled health AI are developed and deployed are needed to channel these innovations in societally beneficial directions. Social implications – Health data may be used to address pressing societal concerns, such as operational and system-level improvement, and innovations such as personalized medicine. This paper informs work seeking to harness these resources for societal good amidst many competing value claims and substantial risks for privacy and security. Originality/value – This is the first paper focusing on health data governance in relation to AI/machine learning. Keywords – Big data, Governance, Artificial intelligence, Deep learning, Personal health information

Description

Peer-reviewed journal article: Winter, J. S., & Davidson, E. (2019). “Governance of artificial intelligence and personal health information.” Digital Policy, Regulation and Governance (DPRG), 21(3), 280-290. Special issue on “Artificial Intelligence: Beyond the hype?” doi:10.1108/DPRG-08-2018-0048

Keywords

big data, data governance, artificial intelligence, personal health information, deep learning

Citation

Winter, J. S., & Davidson, E. (2019). “Governance of artificial intelligence and personal health information.” Digital Policy, Regulation and Governance (DPRG), 21(3), 280-290. Special issue on “Artificial Intelligence: Beyond the hype?” doi:10.1108/DPRG-08-2018-0048

Extent

16 pages

Format

Geographic Location

Time Period

Related To

Related To (URI)

Table of Contents

Rights

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.