Governance of artificial intelligence and personal health information
dc.contributor.author | Winter, Jenifer Sunrise | |
dc.contributor.author | Davidson, Elizabeth | |
dc.date.accessioned | 2019-10-07T21:34:30Z | |
dc.date.available | 2019-10-07T21:34:30Z | |
dc.date.issued | 2019 | |
dc.description | Peer-reviewed journal article: Winter, J. S., & Davidson, E. (2019). “Governance of artificial intelligence and personal health information.” Digital Policy, Regulation and Governance (DPRG), 21(3), 280-290. Special issue on “Artificial Intelligence: Beyond the hype?” doi:10.1108/DPRG-08-2018-0048 | |
dc.description.abstract | Purpose – This paper aims to assess the increasing challenges to governing the personal health information (PHI) essential for advancing artificial intelligence (AI) machine learning innovations in health care. Risks to privacy and justice/equity are discussed, along with potential solutions. Design/methodology/approach – This conceptual paper highlights the scale and scope of PHI data consumed by deep learning algorithms and their opacity as novel challenges to health data governance. Findings – This paper argues that these characteristics of machine learning will overwhelm existing data governance approaches such as privacy regulation and informed consent. Enhanced governance techniques and tools will be required to help preserve the autonomy and rights of individuals to control their PHI. Debate among all stakeholders and informed critique of how, and for whom, PHI-fueled health AI are developed and deployed are needed to channel these innovations in societally beneficial directions. Social implications – Health data may be used to address pressing societal concerns, such as operational and system-level improvement, and innovations such as personalized medicine. This paper informs work seeking to harness these resources for societal good amidst many competing value claims and substantial risks for privacy and security. Originality/value – This is the first paper focusing on health data governance in relation to AI/machine learning. Keywords – Big data, Governance, Artificial intelligence, Deep learning, Personal health information | |
dc.format.extent | 16 pages | |
dc.identifier.citation | Winter, J. S., & Davidson, E. (2019). “Governance of artificial intelligence and personal health information.” Digital Policy, Regulation and Governance (DPRG), 21(3), 280-290. Special issue on “Artificial Intelligence: Beyond the hype?” doi:10.1108/DPRG-08-2018-0048 | |
dc.identifier.doi | 10.1108/DPRG-08-2018-0048 | |
dc.identifier.uri | http://hdl.handle.net/10125/63439 | |
dc.language.iso | en-US | |
dc.publisher | Emerald | |
dc.subject | big data | |
dc.subject | data governance | |
dc.subject | artificial intelligence | |
dc.subject | personal health information | |
dc.subject | deep learning | |
dc.title | Governance of artificial intelligence and personal health information | |
dc.type | Journal | |
dc.type.dcmi | Text | |
prism.endingpage | 290 | |
prism.number | 3 | |
prism.publicationname | Digital Policy, Regulation and Governance | |
prism.startingpage | 280 | |
prism.volume | 21 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- POST-PRINT Governance of artificial intelligence and personal health information.pdf
- Size:
- 218.4 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.73 KB
- Format:
- Item-specific license agreed upon to submission
- Description: