A Spatiotemporal Analysis of New York State Grid Transition under the CLCPA Energy Strategy

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

2527

Ending Page

Alternative Title

Abstract

To decarbonize the energy sector, clean energy plans with a tremendous quantity of renewable energy integration are emerging globally. New York State (NYS) has one of the most ambitious targets to realize carbon-neutrality by 2040. To investigate the feasibility of this plan, the starting point of the plan is analyzed on a modified representation of the NYS power grid. Historical data for 2019 is used to model the spatiotemporal co-variability of load and virtual renewable outputs at hourly intervals. Optimal power flow analysis is simulated on daily basis for the full year to examine the performance of the system from annual to hourly levels. Results identify bottlenecks to using renewable energy efficiently and reliably with an emphasis on storage units, providing system operators, policymakers, and stakeholders with a practical research foundation.

Description

Keywords

Distributed, Renewable, and Mobile Resources, battery analysis, decarbonization, power system modeling, renewable integration

Citation

Extent

11

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.