Parameter Tolerance in Capacity Planning Models

Date

2017-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

In capacity planning for a service operation, analytical models based on queueing theory allow the user to quickly estimate the capacity required and to easily experiment with different system designs or configurations, for a given set of input parameters. An input parameter of the model could be inaccurate or may not be known beyond a good guess. In order to determine if the analysis results (and hence the system design) are robust to parameter estimation errors, sensitivity analysis can be performed. We study an alternative approach that involves specifying a tolerance range of a system performance measure and calculating a feasible region of the uncertain parameters for which the performance measure will be within the tolerance range. We illustrate this approach using basic exponential queueing models as well as a model of an order fulfillment operation in a distribution center.

Description

Keywords

parameter tolerance, sensitivity analysis, capacity planning, queueing

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 50th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.