On Intelligence Augmentation and Visual Analytics to Enhance Clinical Decision Support Systems
Files
Date
2022-01-04
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Human-in-the-loop intelligence augmentation (IA) methods combined with visual analytics (VA) have the potential to provide additional functional capability and cognitively driven interpretability to Decision Support Systems (DSS) for health risk assessment and patient-clinician shared decision making. This paper presents some key ideas underlying the synthesis of IA with VA (IA/VA) and the challenges in the design, implementation, and use of IA/VA-enabled clinical decision support systems (CDSS) in the practice of medicine through data driven analytical models. An illustrative IA/VA solution provides a visualization of the distribution of health risk, and the impact of various parameters on the assessment, at the population and individual levels. It also allows the clinician to ask “what-if” questions using interactive visualizations that change actionable risk factors of the patient and visually assess their impact. This approach holds promise in enhancing decision support systems design, deployment and use outside the medical sphere as well.
Description
Keywords
Decision Support for Healthcare Processes and Services, artificial intelligence, clinical decision support systems, intelligence augmentation, risk assessment, visual analytics
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.