Space-Time Kernel Density Estimation for Real-Time Interactive Visual Analytics
dc.contributor.author | Eaglin, Todd | |
dc.contributor.author | Cho, Isaac | |
dc.contributor.author | Ribarsky, William | |
dc.date.accessioned | 2016-12-29T00:35:28Z | |
dc.date.available | 2016-12-29T00:35:28Z | |
dc.date.issued | 2017-01-04 | |
dc.description.abstract | We present a GPU-based implementation of the Space-Time Kernel Density Estimation (STKDE) that provides massive speed up in analyzing spatial- temporal data. In our work we are able to achieve sub- second performance for data sizes transferable over the Internet in realistic time. We have integrated this into web-based visual interactive analytics tools for analyzing spatial-temporal data. The resulting inte- grated visual analytics (VA) system permits new anal- yses of spatial-temporal data from a variety of sources. Novel, interlinked interface elements permit efficient, meaningful analyses. | |
dc.format.extent | 10 pages | |
dc.identifier.doi | 10.24251/HICSS.2017.165 | |
dc.identifier.isbn | 978-0-9981331-0-2 | |
dc.identifier.uri | http://hdl.handle.net/10125/41318 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings of the 50th Hawaii International Conference on System Sciences | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Analytics | |
dc.subject | GPU | |
dc.subject | Space-Time | |
dc.subject | Visualization | |
dc.title | Space-Time Kernel Density Estimation for Real-Time Interactive Visual Analytics | |
dc.type | Conference Paper | |
dc.type.dcmi | Text |
Files
Original bundle
1 - 1 of 1