Fumigant Toxicity of Essential Oils Against Frankliniella occidentalis, F. insularis (Thysanoptera: Thripidae), and Solanum lycopersicum (Solanceae) as Affected by Polymer Release and Adjuvants

Date

2022

Contributor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Some species of thrips have become significant agricultural pests due to their cosmopolitan distribution, feeding damage and vectorial capacity for plant viruses. However, control of this pest is complicated by their life cycle and resistance to conventional insecticides. I sought to explore a novel method of thrips control that addressed these resistance mechanisms by applying essential oils as fumigants. These essential oils included (R)-linalool, racemic linalool, or a binary combination of (R)-linalool with one of twelve other oils (i.e., peppermint, cedarwood, neem, clove, coconut, jojoba, soybean, olive, α-terpineol, 1,8-cineole, trans-anethole and (R)-pulegone) with distilled water as a control. Essential oils were conditioned into hydrogels and exposed to a pesticide resistant species of thrips (Frankliniella occidentalis), a pesticide naive species (Frankliniella insularis), and a host plant of the former (Solanum lycopersicum). Thrips and tomatoes were first exposed separately in in vitro trials, and then together in caged-plant trials. Pure (R)-linalool and its binary mixture with peppermint oil were the most toxic to both species of thrips and tomatoes in in vitro trials. However, caged-plant trials revealed a greater level of resistance to essential oil fumigation than that predicted by in vitro trials. This resistance was attributed to behavioral resistance mechanisms precluded by in vitro trials. While certain essential oils have demonstrated potential as alternatives to conventional insecticides, glasshouse and field trials are necessary to fully quantify the extent to which the life history traits of thrips contribute to bioinsecticide resistance.

Description

Keywords

Entomology, enantioselective toxicity, insecticide, linalool, phytotoxicity, resistance, synergism

Citation

Extent

60 pages

Format

Geographic Location

Time Period

Related To

Related To (URI)

Table of Contents

Rights

All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.