On the Environmental and Economic Impact of Utility-Scale Renewable Energy Deployment

Date
2022-01-04
Authors
Peerzada, Aaqib
Begovic, Miroslav M.
Ostojic, Dejan
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
As per the U.S Energy Information Administration’s latest inventory of electricity generators, renewable energy, most notably solar and wind, will account for roughly 70% of nearly 40 gigawatts of new electricity generating capacity to start commercial operation in 2021. The year 2021 will also set a record in the deployment of utility-scale solar capacity by adding 15.4 gigawatts of capacity to the grid, which surpasses the 12 gigawatts increase in 2020. The rapid increase of renewable energy is expected to significantly decrease emissions of greenhouse gases and change the load profile in the power grid by suppressing production from conventional generators. This paper aims to propose a framework to study the impact of utility-scale solar PV deployment on the generation resource allocation and investigate the economics and policy of electricity generation and carbon emissions. The investigation is carried on the generation resource pool of the southeast region of the U.S augmented by a substantial amount of utility-scale solar generation.
Description
Keywords
Distributed, Renewable, and Mobile Resources, carbon emissions, carbon tax, marginal cost, renewable energy
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.