Software Design of Energy-Aware Peripheral Control for Sustainable Internet-of-Things Devices

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The resource-efficient development of technical devices is one of the most important non-functional requirements regarding to global warming. This applies in particular to the growing field of the (Industrial) Internet of Things. The energy consumption of such systems must be minimized to ensure a long operational lifetime. The realization requires to exploit the possibilities of the complete system (microcontroller and external peripherals) by the software application. In many cases, however, the software engineer is not aware of the energy-saving properties of the hardware platform. This paper introduces a novel software framework that aims to bridge the gap between the hardware level and the application level. It enables vertical control, i.e., consistent access across multiple software architectural layers. This paper describes the framework in terms of design patterns, shows an implementation along the C++20 standard, and concludes with an evaluation on a popular hardware platform.

Description

Keywords

Software Development for Mobile Devices, the Internet-of-Things, and Cyber-Physical Systems, c++20, energy-awareness, internet-of-things, power consumption, software design pattern

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.