Processing Patient Information Leaflets with Embeddings
Files
Date
2022-01-04
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
As of 2021, more than 100,000 drugs are approved in Germany, 35,000 of which are non-prescriptive over-the-counter drugs. While proven information from medical studies is given in patient information leaflets, patients are often lost when trying to determine which drugs are compatible with their needs or which alternatives are suitable. We show that representing patient information leaflets as dense vectors allows us to extract more valuable medical information than is explicitly stated in the leaflets. Without any explicit insertion of medical knowledge, our embeddings capture concepts of generics, even with respect to the dosage form. Furthermore, the embeddings allow patients to identify drug clusters based on their treatment area and offer suitable alternatives based on analogical reasoning. The carved-out information may not only help patients to explore alternative drugs but also serve pharmacists and patients as a new way to search for drugs tailored to dietary, allergic, or medical needs.
Description
Keywords
Decision Support for Healthcare Processes and Services, data mining, decision support systems, embeddings, patient information leaflets
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.