Predicting Lower Extremity Joint Kinematics Using Multi-Modal Data in the Lab and Outdoor Environment

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3201

Ending Page

Alternative Title

Abstract

Predicting future walking joint kinematics is crucial for assistive device control, especially in variable walking environments. Traditional optical motion capture systems provide kinematics data but require laborious post-processing, whereas IMU based systems provide direct calculations but add delays due to data collection and algorithmic processes. Predicting future kinematics helps to compensate for these delays, enabling the system real-time. Furthermore, these predicted kinematics could serve as target trajectories for assistive devices such as exoskeletal robots and lower limb prostheses. However, given the complexity of human mobility and environmental factors, this prediction remains to be challenging. To address this challenge, we propose the Dual-ED-Attention-FAM-Net, a deep learning model utilizing two encoders, two decoders, a temporal attention module, and a feature attention module. Our model outperforms the state-of-the-art LSTM model. Specifically, for Dataset A, using IMUs and a combination of IMUs and videos, RMSE values decrease from 4.45° to 4.22° and from 4.52° to 4.15°, respectively. For Dataset B, IMUs and IMUs combined with pressure insoles result in RMSE reductions from 7.09° to 6.66° and from 7.20° to 6.77°, respectively. Additionally, incorporating other modalities alongside IMUs helps improve the performance of the model.

Description

Keywords

Body Sensor Networks for Personalized Medicine, deep learning, future kinematics prediction, multi-modal fusion, prosthesis control, wearable sensors

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.