Distributed Power System State Estimation Using Graph Convolutional Neural Networks

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

2756

Ending Page

Alternative Title

Abstract

State estimation plays a key role in guaranteeing the safe and reliable operation of power systems. This is a complex problem due to the noisy and unreliable nature of the measurements that are obtained from the power grid. Furthermore, the laws of physics introduce nonconvexity, which makes the use of efficient optimization-based techniques more challenging. In this paper, we propose to use graph convolutional neural networks (GCNNs) to learn state estimators from data. The resulting estimators are distributed and computationally efficient, making them robust to cyber-attacks on the grid and capable of scaling to large networks. We showcase the promise of GCNNs in distributed state estimation of power systems in numerical experiments on IEEE test cases.

Description

Keywords

Resilient Networks, convolutional neural networks, graph neural networks, power system monitoring, state estimation

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.