A COMPARATIVE STUDY OF THE TSUNAMIS FROM THE 2021 AND 2023 LOYALTY ISLANDS Mw 7.7 THRUST-FAULT AND NORMAL-FAULT EARTHQUAKES
Date
2024
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The Vanuatu Subduction Zone, which runs along the San Cristobal Trench and New Hebrides Trench, is an active tectonic region with a history of moderate to large tsunamigenic earthquakes. While over 40 earthquakes of Mw 7.0 or stronger have occurred along the New Hebrides trench within the past quarter-century, the subduction dynamics, tsunamigenic potential, and coastal risk of tsunamigenic earthquakes emanating from the southern trench remain understudied. We compare the tsunami signals from the 2021 and 2023 Mw 7.7 thrust-fault and normal-fault earthquakes along the South New Hebrides Trench. The 2021 megathrust earthquake was determined to have a relatively shallow slip patch with a focal depth of 10.0 km. The 2023 outer-rise normal-faulting earthquake occurred westward of the 2021 event at a depth of 18.1 km. The comparable moment magnitude and proximity of their epicenters provide an opportunity to examine the influence of fault mechanisms and bathymetric features at the Southern New Hebrides Trench on the tsunami waveform throughout the Southwest Pacific. The preferred finite-fault rupture models for each earthquake event were determined through iterative inversion of teleseismic P-waves and forward modeling of the tsunami waveform to match measurements at DART and coastal tide gauge stations. Analysis of the computed tsunami waveforms reveals that the 2021 and 2023 tsunamis are primarily influenced by the location of the seafloor deformation with respect to major bathymetric features in the near-field. The width of seafloor deformation and source water depth influence the subsequent period of tsunami waves, which has a strong effect on far-field energy lobes guided by seamounts and small islands, but the overall wave patterns exhibit similarities because the effects of bathymetry and resonance dominate at a larger scale.
Description
Keywords
Ocean engineering, earthquake, tsunami
Citation
Extent
51 pages
Format
Geographic Location
Time Period
Related To
Related To (URI)
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.