How to trade electricity flexibility using artificial intelligence - An integrated algorithmic framework

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

In course of the energy transition, the growing share of Renewable Energy Sources (RES) makes electricity generation more decentralized and intermittent. This increases the relevance of exploiting flexibility potentials that help balancing intermittent RES supply and demand and, thus, contribute to overall system resilience. Digital technologies, in the form of automated trading algorithms, may considerably contribute to flexibility exploitation, as they enable faster and more accurate market interactions. In this paper, we develop an integrated algorithmic framework that finds an optimal trading strategy for flexibility on multiple markets. Hence, our work supports the trading of flexibility in a multi-market environment that results in enhanced market integration and harmonization of economically traded and physically delivered electricity, which finally promotes resilience in highly complex electricity systems.

Description

Keywords

Resilient Networks, artificial intelligence, electricity, flexibility, resilience, trading

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.