Coupling Neural Networks Between Clusters for Better Personalized Care

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3627

Ending Page

Alternative Title

Abstract

Personalized healthcare powered by machine learning (ML) is at the forefront of modern medicine, promising to optimize treatment outcomes, reduce adverse effects, and improve patient satisfaction. However, simple ML models generally lack the complexity to accurately model individual characteristics, while powerful ML models require large amounts of data, which are often unavailable in the healthcare domain. We address this problem with cluster-level personalization. In this method, similar patients are grouped into clusters and a local ML model is trained for each cluster. Since the amount of patient data to train ML models naturally decreases for each cluster, we introduce a novel objective function called "coupling" that allows information to be shared between clusters, so that smaller clusters can also benefit from information from larger clusters, thereby improving patient outcome prediction. Our method provides a compromise between a single global model for all patients and completely independent local cluster models. We show that coupling leads to statistically significant improvements on a simulated and a real-world dataset in the context of diabetes.

Description

Keywords

Personal Health Management with Digital Solutions, machine learning, neural networks, optimization, personalized care

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.