Improving Prediction Models for Mass Assessment: A Data Stream Approach

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Mass appraisal is the process of valuing a large collection of properties within a city/municipality usually for tax purposes. The common methodology for mass appraisal is based on multiple regression though this methodology has been found to be deficient. Data mining methods have been proposed and tested as an alternative but the results are very mixed. This study introduces a new approach to building prediction models for assessing residential property values by treating past sales transactions as a data stream. The study used 110,525 sales transaction records from a municipality in the Midwest of the US. Our results show that a data stream based approach outperforms the traditional regression approach, thus showing its potential in improving the performance of prediction models for mass assessment.

Description

Keywords

Data, Text, and Web Mining for Business Analytics, data stream models, mass assessment, prediction, real estate properties

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.