Semantic-Level New Information Identification in Electronic Health Records Using Text-Mining Techniques

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3336

Ending Page

Alternative Title

Abstract

Electronic health records (EHRs) are widely used in healthcare systems to store and transmit patients’ health records. They have many advantages, such as saving space, increasing efficiency, and facilitating communication. However, they also have a major drawback: information redundancy. Healthcare professionals often use copy and paste to write clinical notes, which leads to excessive similarity and low diversity in EHRs. This impairs the readability and quality of EHRs and hinders decision making. To address this problem, this study proposes a text-mining approach to identify new information at semantic-level in EHRs. Unlike previous studies that focused on word-level identification, we use concept occurrence and concept similarity score methods to annotate new information at semantic-level and evaluate them with gold standards. The experimental evaluation demonstrates that the method proposed in this study achieves an F1-score ranging from 78.57 to 80.31 under various parameter combinations. The proposed method enables healthcare professionals to read EHRs more efficiently and make more informed decisions.

Description

Keywords

Decision Support for Healthcare Processes and Services, data mining, electronic health records, new information, semantic similarity, umls

Citation

Extent

8 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.