A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources
Files
Date
2025-01-07
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3157
Ending Page
Alternative Title
Abstract
The growing prevalence of inverter-based resources (IBRs) for renewable energy integration and electrification greatly challenges power system dynamic analysis. To account for both synchronous generators (SGs) and IBRs, this work presents an approach for learning the model of an individual dynamic component. The recurrent neural network (RNN) model is used to match the recursive structure in predicting the key dynamical states of a component from its terminal bus voltage and set-point input. To deal with the fast transients especially due to IBRs, we develop a Stable Integral (SI-)RNN to mimic high-order integral methods that can enhance the stability and accuracy for the dynamic learning task. We demonstrate that the proposed SI-RNN model not only can successfully predict the component's dynamic behaviors, but also offers the possibility of efficiently computing the dynamic sensitivity relative to a set-point change. These capabilities have been numerically validated based on full-order Electromagnetic Transient (EMT) simulations on a small test system with both SGs and IBRs, particularly for predicting the dynamics of grid-forming inverters.
Description
Keywords
Resilient Networks, dynamic sensitivity:, ibr, modularized dynamics learning, stable integral (si-)rnn
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 58th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.