Exploring the Intellectual Composition of Academic Research Conferences: Computational Text Analysis of the HICSS Paper Archive from 2017-2022

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

844

Ending Page

Alternative Title

Abstract

Academic research conferences play a critical role in national and international scientific production. For example, the Hawaii International Conference on System Sciences is one of the longest running academic conferences in the world. HICSS consistently produces a wide range of high-quality, peer-reviewed research papers, distributed amongst 10 core tracks, and multiple minitracks. This paper provides a computational method for assessing academic research conferences by exploring the intellectual composition of the HICSS conference asking: what themes are most prevalent across the conference? Are topics identifiable? Can we predict the track of a paper from its abstract? To answer these questions, we analyze the HICSS papers from 2017-2022 (n=5,024). Applying inductive and deductive text-mining techniques, including: “Bag of Words” frequencies, NLP, unsupervised and supervised machine learning, we find several consistent themes and topics over the past five years, as well as meaningful divergence. Finally, the abstract of a paper predicts its track.

Description

Keywords

Big Data and Analytics: Pathways to Maturity, conference papers, named entity recognition, supervised machine learning., text analytics, topic modeling

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.