Tuning Hyperparameters for DNA-based Discrimination of Wireless Devices
Files
Date
2021-01-05
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
6965
Ending Page
Alternative Title
Abstract
The Internet of Things (IoT) and Industrial IoT (IIoT) is enabled by Wireless Personal Area Network (WPAN) devices. However, these devices increase vulnerability concerns of the IIoT and resultant Critical Infrastructure (CI) risks. Secure IIoT is enabled by both pre-attack security and post-attack forensic analysis. Radio Frequency (RF) Fingerprinting enables both pre- and post-attack security by providing serial-number level identification of devices through fingerprint characterization of their emissions. For classification and verification, research has shown high performance by employing the neural network-based Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier. However, GRLVQI has numerous hyperparameters and tuning requires AI expertise, thus some researchers have abandoned GRLVQI for notionally simpler, but less accurate, methods. Herein, we develop a fool-proof approach for tuning AI algorithms. For demonstration, Z-Wave, an insecure low-power/cost WPAN technology, and the GRLVQI classifier are considered. Results show significant increases in accuracy (5% for classification, 50% verification) over baseline methods.
Description
Keywords
Cyber Operations, Defence, and Forensics, cyber, digital forensics, hyperparameter, neural networks, rf fingerprinting
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.