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Abstract 
 

The Internet of Things (IoT) and Industrial IoT 

(IIoT) is enabled by Wireless Personal Area Network 

(WPAN) devices. However, these devices increase 

vulnerability concerns of the IIoT and resultant 

Critical Infrastructure (CI) risks. Secure IIoT is 

enabled by both pre-attack security and post-attack 

forensic analysis. Radio Frequency (RF) 

Fingerprinting enables both pre- and post-attack 

security by providing serial-number level identification 

of devices through fingerprint characterization of their 

emissions. For classification and verification, research 

has shown high performance by employing the neural 

network-based Generalized Relevance Learning 

Vector Quantization-Improved (GRLVQI) classifier.  

However, GRLVQI has numerous hyperparameters 

and tuning requires AI expertise, thus some 

researchers have abandoned GRLVQI for notionally 

simpler, but less accurate, methods. Herein, we 

develop a fool-proof approach for tuning AI 

algorithms. For demonstration, Z-Wave, an insecure 

low-power/cost WPAN technology, and the GRLVQI 

classifier are considered. Results show significant 

increases in accuracy (5% for classification, 50% 

verification) over baseline methods. 

 

1. Introduction  

 
The commercial internet of things (IoT) is enabled 

by low-cost and low-power Wireless Personal Area 

Network (WPAN) devices which create mesh 

networks and allow for widespread interaction and 

monitoring of smart devices [1].  Due to their abilities, 

relatively insecure WPAN devices, such as Z-Wave 

and ZigBee, find their way into Industrial IoT (IIoT) 

applications, including Critical Infrastructure (CI) uses  

[2]. Inherent vulnerabilities exist in WPAN 

technologies, see [3], which is compounded due to 

device-to-internet pathways, sensitivity of the CI 

applications, and that one compromised device can 

threaten the security of the entire network [4]. 

Robust security is of interest for both pre-attack 

defense and post-attack forensics by improving the 

ability to determine WPAN device identities. A general 

understanding of ISO layers (NWK: Network, MAC: 

Media Access Control, and PHY: Physical) and their 

relationship to security can be considered as [5]: 

1. “Something you know” (NWK – encryption keys) 

2. “Something you have” (MAC – MAC address) 

3. “Something you are” (PHY – RF Fingerprints) 

However, predominantly, WPAN security 

considers bit-level identities (MAC and NWK); thus 

ignoring intrinsic properties found at the PHY layer.   

Whether addressing pre-attack defense or post-

attack forensic analysis, the preponderance of threat 

detection and protection work in process control 

systems occurs above the PHY layer. Radio Frequency 

(RF) fingerprinting involves computing features, 

“fingerprints,” for predefined signal regions, such as 

preambles, by dividing the signal into bins and 

computing statistical features for each bin [6].  For this, 

the standard three step biometric process (library 

building, classifier model development, and 

verification) [7], is followed. Key to this are accurate 

machine learning (ML) methods. 

The Generalized Relevance Learning Vector 

Quantization-Improved (GRLVQI) classifier, a 

nonlinear Artificial Neural Network (ANN) algorithm, 

has been shown to provide good discrimination ability 

for RF Fingerprinting [5]. However, GRLVQI, as with 

other ANN algorithms, has multiple hyperparameters, 

which require luck or expertise to tune effectively.  In 

general, there are “no hard-and-fast rules” in 

determining hyperparameter and their selection is part 

of the “art of [algorithm] design” [8]. Prior works in 

related areas such as feature selection, have even cited 

the complexity of the task of hyperparameter selection 

and tuning as a reason to utilize more simple ML 

algorithms [9]. In some cases - particularly in post-

attack forensics where the amount of data may be very 

large – this could limit the utility of more powerful 

computing paradigms, such as ANNs. This is further 

exacerbated by the difficulty of data collection - and 

even attribution of results - from Operational 

Technology (OT) systems in Supervisory Control and 

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 6965
URI: https://hdl.handle.net/10125/71458
978-0-9981331-4-0
(CC BY-NC-ND 4.0)



Data Acquisition (SCADA) and CI environments 

where specific system expertise is most likely required 

[10]. To that end, quality ML models are often hand-

crafted and require significant expertise (i.e., luck and 

talent) to appropriately train and deploy. Care is needed 

in the specification of ML models too, since an overly 

conservative learning rate results in sub-optimal 

performance preventing convergence. However, an 

overly liberal learning rate could result in highly 

oscillatory training behavior, again, with sub-optimal 

performance. Thus, to serve the pre-attack or post-

attack needs of an IIoT system, a global goal of any 

proposed technique should be to maximize the 

efficiency of the algorithm, harness the full power of 

the best available algorithms for the task, and minimize 

the expert knowledge – both in system and algorithm.  

Prior work, c.f. [5] [6], examined full factorial 

design of experiments (DoE) and hill-climbing 

approaches. However, both of these approaches had 

significant limitations. DoE methods are 

comptuationally costly and only explore limited 

regions of the operating space and while hill-climbing 

methods quickly become trapped by local optima.  An  

additional limitation is neither can handle both discrete 

and continuous variables.  Recently, Bayesian 

Optimization (BO) has been shown to be superior to 

other hyperparameter determination methods in both 

efficiency and model accuracy.  BO exploits the 

randomness inherent in stochastic processes, such as 

ANNs, and finds viable operating points.   

The contributions of our paper are as follows. This 

work compares four hyperparameter optimization 

methods for WPAN security using the GRLVQI 

algorithm as the representative classifier. The four 

methods are BO, leveraging the process of [11], 

Stochastic Approximation (SA) [6], and DoE [5]. An 

extension of CRISP-DM is used to create a repeatable 

process for this purpose using experimentally collected 

Z-Wave RF Fingerprints. We apply the four 

hyperparameter optimization methods to GRLVQI and 

aim to make the experiments as similar as possible. 

Evaluations consider both classification (1 vs N) and 

verification (1 vs 1 claimed identity) with results 

showing the BO-optimized GRLVQI outperforms past 

work by 50% in true verification rate accuracy. We 

further illustrate how BO offers better accuracy, easier 

operations than other methods, and greater 

understanding algorithmic hyperparameter space.     

 

2. Background 
 

With expansions of the IoT, the cyber attack surface 

is increasing due to the multitude of sub-internet 

pathways. Some examples are  common WPAN 

technologies such as WiFi, Z-Wave, ZigBee and 

Bluetooth devices.  This includes expansions of the 

IIoT into SCADA [12] systems and CI.  

Problematically, WPAN devices serve as the backbone 

for IoT and IIoT connectivity and these often have 

notable security deficiencies. 

Related to the WPAN devices, the industrial 

systems WPAN technologies thrust into the IIoT fall 

under the banner of OT, as noted in Section 1. Many, if 

not nearly all, OT systems in operation were desiged to 

operate, sense, or monitor an industiral process safely 

and reliably [13]. As the IoT and OT systems converge 

in the IIoT, the introduction of OT to these wireless 

networks has outpaced the inclusion of adequate 

security measures, or been unable to simply adopt a 

known cybersecurity practice [13]. Furthermore, OT 

systems often require system-by-system expertise [10].  

The expert knowledge paradigm within OT is an 

obvious drawback for any system defense framework 

or forensic analysis technique, it opens an opportunity 

for exploiting knowledge of the better known WPAN 

technologies. One such WPAN technology used in 

IIoT applications is Z-Wave. 

 
2.1.  Z-Wave Devices  
 

Z-Wave is a WPAN technology that offers both 

small and low-cost hardware devices that support many 

network topologies [14]. Practically, Z-Wave is similar 

to ZigBee and other technologies, but is simpler to 

work with [14], differences also exist in security, 

operating frequency, data rate, and latency. Primarily, 

the proprietary nature of the Z-Wave standard and lack 

of initial encyption result in Z-Wave being less secure 

than competing WPAN technologies [15]. Basic 

knowledge of Z-Wave suggests it has a similar ISO 

architecture to ZigBee due to its adherence to the ITU-

T G.9959 protocol at the PHY and MAC layers [16].  

However, as illustrated in Figure 1, details above the 

MAC layer are unknown. Therefore, to understand Z-

Wave, digital forensics, c.f. [17],  are necessary and an 

emerging area of interest [3]. 

 

 
Figure 1. Z-Wave device protocol 

characteristics, from [6]. 
 

The PHY packet structure of Z-Wave is 

conceptualized in Figure 2.  This illustrates two critical 

components of the Z-Wave protocol: the predefined 

preamble and the Start of Frame (SoF) [18].  Z-Wave 
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is also known to include a 32-bit payload-based home 

identification and 8-bit source identification [15].      

 
Figure 2. Z-Wave signal characteristics, from [6]. 

 

2.2 RF-DNA Fingerprinting  
 
 RF Fingerprinting was implemented per the RF-
DNA (Distinct Native Attributes) fingerprinting 
process of [19].  RF-DNA is a systematic process of RF 
Fingerprinting that involves selecting an ROI to 
extract, then digital filtering, along with computating 
the instantaneous amplitude, frequency and phase, 
fingerprint generation, and finally classifier model 
development and verification testing [19]. RF-DNA 
provides biometric-like security of communication 
devices with discrimination abilities at the serial-
number level. 
 
2.2.1.  Z-Wave Signal Collection and Pre-
Classification Signal Processing.   Of interest in RF 
Fingerprinting of Z-Wave devices is exploiting the 
knowledge that the Preamble and SoF have a 
predefined and known order of 1s and 0s which should 
be the same for all Z-Wave devices.  Thus, we aim to 
discriminate between individual Z-Wave devices based 
on minute variations in the preamble signals.  
 As described in [5] [6], to create a Z-Wave 
database, three devices (ND = 3), were considered with 
each device being an Aeon Labs’ Aeotec Z-Stick S2 
transmitters. For each device, a total of 230 preamble 
responses were collected [5]. The preamble response 
(the first 8.3 ms of Z-Wave bursts) was the region of 
interest (ROI) for studying this data and thus devices 
were turned on/off to collect preamble data without 
necessarily completing package delivery [5].  
 As discussed in [5] [6], for data collection each 
device was placed 10 cm in line of sight from a 
vertically-oriented log periodic antenna (LP0410, Ettus 
Research, Santa Clara, CA). The antenna was 
connected via a Gigabit Ethernet cable directly to a 
software defined radio device RF input (USRP-2921, 
National Instruments) [5] [6].   
 Signals were collected with a sample frequency of 
fs = 2 Msps along with the bursts detected via an 
amplitude-based leading edge detector with a -6 dB 
threshold [5] [6].  The collected bursts had a native 
Signal-to-Noise Ratio (SNR) at SNRC = 24.0 dB amd 
were liked filtered [6]. To replicate more real world 
(degraded and distant) conditions, and consistent with 
[20], independent like-filtered  Additive White 
Gaussian Noise (AWGN) was applied to achieve 

operating conditions of SNR  [0 24.0] dB in 2 dB 
increments [6].   
 Due to the size of the data, i.e. only 3 devices 
considered, and the manual workload required to 
collect additional data, all devices were considered as 
serving in “authorized” roles.  Thus, impersonation 
attacks by “rogue” devices are not considered     

 
2.2.2.  Fingerprint Generation. Consistent with [20], 
RF-DNA fingerprint generation begins by computating 
the instantaneous time domain responses of amplitude 
(𝑎), phase (𝜙), and frequency (𝑓) for the  signal.  These 
responses are then divided into NR contiguous and 
equal length bins and then Ns = 3 features of variance 
(𝜎2), skewness (𝛾), and kurtosis (𝜅) are computed [19], 
[20]. As conceptualized in Figure 3, Ns features are 
computed for each bin and across the entire response 
for a total of NR + 1 features per amplitude, phase, and 
frequency response at a given SNR [19], [20]. From 
this, one considers RF regional fingerprint vectors as 

 𝑭𝑅𝑖 = [𝜎𝑅𝑖
2 , 𝛾𝑅𝑖 , 𝜅𝑅𝑖 ]1×3  , 

(1) 

where 𝑖 = 1,2,… ,𝑁𝑅 + 1, for the NS = 3 RF fingerprint 

features (statistics) [19], [20].  

 
Figure 3. RF fingerprinting concept, from [20]. 

 
From RF regional fingerprint vectors, a fingerprint 

vector for each of the responses is formed from (1) as,  

 𝑭𝐶 = [𝑭𝑅1
  𝑭𝑅2

⋯𝑭𝑅(𝑁𝑅+1)
 ]

1×𝑁𝑠(𝑁𝑅+1)
  ,  (2) 

which are concatenated to form the fingerprint vector: 

 𝑭 = [𝑭𝒂 ⋮ 𝑭𝝓 ⋮ 𝑭𝒇 ]
1×𝑁𝑠(𝑁𝑅+1)×𝑁𝐶

  .   
(3) 

Consistent with [5] [6], NR = 20 subregions 
spanning the ROI were considered for Z-Wave devices.  
Given the 230 preambles collected per Z-Wave device 
and the NR , a total of NF = 189 features (𝑎, 𝜙, and 𝑓 
responses with 𝜎2, 𝛾, and 𝜅 features) were computed 
with equal splitting of the data between training and 
testing in an interleaved manner with NTRN = 115 
Training (TNG) and NTST = 115 Testing (TST) 
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preamble observations per device. Thus, with NC = 3 
devices, our dataset has a total of NTRN = 345 and 
NTST = 345 observations, each with NF = 189 
fingerprint features. To avoid the possibility of 
overfitting, TNG and TST data were sequestered. 

 

2.3. Classifier Models 
 

Various classifiers have been applied to RF and RF-

DNA fingerprints, including Multiple Discriminant 

Analysis (MDA) [19], GRLVQI [5], and random 

forests [21].  Of interest herein is GRLVQI which has 

1) a well known trackrecord for valid RF 

Fingerprinting classification [5], but also 2) a variety of 

hyperparameters to select.  MDA is of further interest 

to provide a performance baseline.  Furthermore, both 

MDA and GRLVQI have their own performance 

advantages in RF fingerprinting problems [5] [6]. 
 

2.4.1.  GRLVQI Classifier Model. GRLVQI belongs 

to the neural network family of algorithms known as 

self-organizing ANNs [22]. GRLVQI is an extension, 

see [8], of the Learning Vector Quantization (LVQ) 

approach of Kohonen [23].  LVQ methods employ 

nearest neighbor approaches through the nearest node, 

or prototype vector (PV) in LVQ terminology, whereby 

each PV is iteratively moved to characterize the data 

through a lower dimensionality structure that captures 

the data’s characteristics [24]. Practically, LVQ 

algorithms train PVs to a given class label by moving 

correctly classified PVs closer to a given class and 

moving incorrectly classified PVs away. 

 LVQ has seen many embellishments which create 

new algorithms [25], GRLVQI is one such algorithm 

and the additional letters in the acronym signify each 

embellishment: G (generalized) for the inclusion of a 

sigmoidal cost function [26], R (relevance) for the 

incorporation of an extra loop for relevance learning 

[27], and I (improved) for improvements in PV update 

logic and operation [8]. The improvements of GRLVQI 

over GRLVQ [27] include the conscience learning of 

DeSieno [28], improved PV update logic, and a 

frequency based maximum input update strategy [8].   

When compared to the simple conceptualization of 

LVQ, GRLVQI is much more complicated.  Both 

employ a gradient descent learning rate (𝜖) to 

determine how fast the PVs move [23], and the number 

of prototype vectors (NPV) per class determine network 

size.  GRLVQI also has a  relevance learning rate (𝜉) 

to determines how quickly variables are penalized for 

being possibly insignificant [27].  Additionally, 

GRLVQI employs conscience rates (𝛾 and 𝛽) 

determine how frequently individual PVs should be 

moved [8]. Thus, GRLVQI has 5 hyperparameters to 

consider.  Additionally, GRLVQI is stochastic in 

nature, as are ANNs in general, and results may vary 

based on random selection of training data. 

 
2.4.2.  Multiple Discriminant Analysis (MDA).  

MDA is a linear approach to classification which 

considers an eigenvector-based projection of the data 

relative to a ratio of between-group to within-group 

sum-of-squares, known as the Fisher criterion [19].  

For RF-DNA fingerprints, MDA considers input 

fingerprint matrix F and NC  classes. Thus, MDA is 

largely intuitive in how it operates, is not stochastic, 

and it is also computationally inexpensive.  However, 

MDA can encounter difficulties with highly nonlinear 

data or when the number of features approaches, or 

exceeds, the number of observations.  For Z-Wave 

data, MDA generally underperforms GRLVQI in 

classification, but outperforms it in verification [5].    

 
2.5. Quantifying Algorithm Performance 

 
To evaluate WPAN device security, two general 

considerations exist: classification and verification. 

Classification considers “one vs. many,” and is 

evaluated using confusion matrices for classifier 

models trained at each SNR operating point [19].  

Verification is considered as a “one vs one” claimed 

identity scenario for a classifier model at a specific SNR 

with the signal compared using the classifier model and 

the associated probability mass function [5].   
 

2.5.1.  Classification Metrics. Classification 

performance is evaluated using two metrics, gain and 

Relative Accuracy Percentage (RAP), from examining 

a plot of average percent correct classification (%C) 

versus SNR [5].  

 Gain is defined as the reduction in required SNR, 

expressed in dB, for two methods to achieve the same 

%C, i.e. an arbitrary performance benchmark of %C = 

90% [5] [19]. Per [5], gain values, GSNR, is interpretted:  
1) GSNR < 0.0 (negative), a method achieves the same 

%C at a higher SNR, i.e. it underperforms. 
2) GSNR = 0.0, a given method achieves the same %C 

as the baseline at the same SNR 
3) GSNR > 0.0 (positive), a method achieves the same 

%C at a lower SNR, i.e. it outperforms. 
However, gain only considers one part of the %C vs. 

SNR curve and it might not have a value if a method 

never reaches 90%. Thus, Relative Accuracy 

Percentage (RAP) and Area Under Classification 

Curve (AUCC) were introduced in [5]. RAP values are 

the computed by finding the AUCC for perfect 

accuracy across the x-axis and then dividing 

AUCCmethod by AUCCperfect. RAP is compared with 

higher RAP indicating better overall accuracy. 
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2.5.2.  Verification Metrics. Verification, as 

described in [19], involves: 1) an unknown device 

claiming bit level credentials (e.g., MAC address) 

which match a specific authorized device, 2) extracting 

RF fingerprint features from the unknown device, and 

3) comparing new RF fingerprints against the model. 

Verification performance is evaluated using Receiver 

Operating Characteristic (ROC) curves at a specified 

SNR for True Verification Rate (TVR) versus False 

Reject Rate (FRR); in experimentation this is typically 

at the lowest SNR a model achieves %C = 90% [5]. 

Two metrics can be computed [5]: firstly, the 

percentage authorized (%Aut) at TVR ≥ 90% at FVR ≤ 

10%. However, %Aut is coarse and dichotomous, e.g. 

ND = 3 devices %Aut  [0, 33, 66, 100], and thus 

distinguishing between relative performance 

differences is impossible, thus we also consider the 

mean area of the ROC curves (AUCM) [5].   

 

3. Hyperparameter Optimization  

 
Hyperparameter determination is an emerging 

discipline in AI and includes a multitude of methods. 

A general taxonomy of these approaches is presented 

in [11]. These can largely be separated into model-free 

and model-based approaches [29].  

Model-free approaches can be 1) scientific, e.g. 

grid searches, or 2) haphazard, e.g. a coder 

experientially finding settings that “just work,” or 3) 

random searches which use random seeds (notably a 

competitive method). Model-based approaches 

employ a wrapper on an outer loop around the 

algorithm of interest and determine settings to explore 

in a concerted search strategy. From the families of 

model-based approaches listed in [11], we consider: 

• Stochastic Approximation [6], which is a hill 

climbing approach with hyperparameters 

individually and sequentially changed.  

Previously applied to GRLVQI in [6].    

• Bayesian optimization (BO) [30]  whereby the 

objective function is treated as a random function 

and randomly determined hyperparameters taken 

from the appropriate distribution around the 

results are found. BO tends to find reasonably 

good choices of hyperparameters, but this has not 

been rigorously studied for cyber applications yet 

The concern with all such hyperparameter 

optimization methods is finding locally optimal 

solutions, which are potentially significantly different 

from the globally optimal solutions.  Unless one 

explores all possible setting combinations, which is 

 
1 Suggested sequences are {𝑎𝑛} =

1

𝑛
 and 𝑐𝑛 = 𝑛−

1

3 

often impossible, it is never possible to be certain that 

one has arrived at the globablly optimal solution.  Thus, 

the different algorithm families aim to address this 

through different strategies: replications in DoE, 

replications and embracing randomness in model-

based approaches, etc.   

 

3.1. Grid Search Approaches 
 
 A grid search involves creating a set of design point 
combinations to explore [31].  Examples include ad hoc 
approaches and factorial designs [31]. Factorial  
experiments consider  all  combinations  to understand 
significance of factors, interaction of factors, and to 
find viable operating points.  The state of the art in DoE 
includes space-saving designs which explore a 
logically chosen subset of all combinations of settings.   
 Grid searches can involve multiple steps as well.  
As described in [5], these steps can include: 

1. Initial design execution 
2. Optimal solution 

a. Spreadsheet search 
b. Response surface methods (RSMs) 

For an algorithm such as GRLVQI, there could be 243 
(35) models to create and evaluate in order to explore 
the combinations from 3 settings for each of the 5 
factors [5].  The spreadsheet search then is merely 
finding the best result from these runs [5].  The RSM 
further explores the space by considering an analysis of 
variance of the factors and their interactions and then 
by fitting a second order model to the data [5].  From 
this, new algorithm settings are computed to explore 
and, hopefully, a better result is found [5]. 

 
3.2. Stochastic Approximation 
 

A general stochastic approximation method is the 

Kiefer and Wolfowitz approach of sequential design 

[6].  Here, we will let ℎ𝑖,𝑗 be the value of the 𝑖𝑡ℎ of 𝑁 

continuous valued hyperparameter of the function of 

interest at iteration 𝑗 of an optimization procedure.  

From this, 𝒉𝑗 is a vector of these hyperparameters.  Let 

𝑓(𝒉𝑗) be the performance measure of interest of our 

function of interest. Finally, let {𝑎𝑛} and {𝑐𝑖} be 

sequences  

 

 

∑ 𝑎𝑖
∞
𝑖=1 = ∞ , 

∑ 𝑎𝑛𝑐𝑛
∞
𝑖=1 < ∞ , 

∑ 𝑎𝑛
2𝑐𝑛

−2∞
𝑖=1 < ∞  . 1  

(5) 

 

Using (5), let 𝒄𝑗
𝑖 = (𝟎𝑖−1, 𝑐𝑗 , 𝟎

𝑁−𝑖) where 𝟎𝑛 is a 

vector of zeroes of size 𝑛. The algorithm works as 
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follows: with 𝝉 being a termination criteria and 𝒇(𝒉𝒊) 
representing the objective function value. Also, let 

|𝒉𝒊 − 𝒉𝒊−𝟏| be the L1 norm of 𝒉𝒊 and 𝒉𝒊−𝟏.  The 

algorithm then iterates over  
 

 

[
 
 
 
 
ℎ1,𝑗+1

⋮
ℎ𝑖,𝑗+1

⋮
ℎ𝑛,𝑗+1]

 
 
 
 

=
𝑎𝑖

2𝑐𝑖

[
 
 
 
 
 
𝑓(𝒉𝑗 + 𝒄𝑗

1) − 𝑓(𝒉𝑗 − 𝒄𝑗
1)

𝑓(𝒉𝑗 + 𝒄𝑗
𝑖)

⋮
−𝑓(𝒉𝑗 − 𝒄𝑗

𝑖)

⋮
𝑓(𝒉𝑗 + 𝒄𝑗

𝑁) − 𝑓(𝒉𝑗 − 𝒄𝑗
𝑁)]

 
 
 
 
 

 

 

(6) 

with one hyperparameter at a time changed. The 

algorithm terminates when the norm of the differences 

between 𝑓(𝒉) of two consective iterations is small.  In 

operation, the process changes one individual 

hyperparameter’s value at a time and looks at objective 

function results when an upper, 𝑓(𝒉𝑗 + 𝒄𝑗
1), and lower, 

𝑓(𝒉𝑗 − 𝒄𝑗
1), value of the hyperparameter is used.  

 

3.3. Bayesian Optimization (BO) 
 BO similarly considers ℎ𝑖,𝑗 and 𝒉𝑗; but additionally, 

ℎ𝑖,𝑗 is in the bounded set ℋ𝑖, which can be continuous 

or integer valued. BO notes that 𝑓(𝒉𝑗) is stochastic in 

nature due to the randomness in the results as a function 

of the random selection of training data [11]. For BO, 

let 𝑦𝑗 = 𝑓(𝒉𝑗) and  let {𝑦𝑗, ℎ𝑗}𝑗=1

𝑛
 be a sequence of 𝑦𝑗 

and ℎ𝑗 pairs.  Based on this sequence, a Gaussian 

process can be fit to 𝑓(∙), denoted by 𝐺𝑃 ({𝑦𝑗, ℎ𝑗}𝑗=1

𝑛
).  

Finally, 𝑎 (𝒉|𝐺𝑃 ({𝑦𝑗, ℎ𝑗}𝑗=1

𝑛
)) , an acquisition 

function, is maximized to find a new set of candiate 

hyperpameters.  While 𝑎(∙) can be chosen by the BO 

designer, common choices are expected improvement, 

probability of improvement, and lower confidence 

bounds [11]; expected improvement was used herein. 

 Sequentially, BO follows the following steps [11]: 

1. Obtain 𝑛0 initial evaluations of 𝑓(∙) at 

randomly selected values of hyperparameters 

within the specified hyperparameter bounds. 

Set 𝑘 = 0. 

2. Fit a Gaussian Process onto {𝑦𝑗, ℎ𝑗}𝑗=1

𝑛𝑘
, 

denoted as 𝐺𝑃 ({𝑦𝑗, ℎ𝑗}𝑗=1

𝑛𝑘
). 

3. Set 𝒉𝑗+1 = argmax
𝒉

𝑎 (𝒉|𝐺𝑃 ({𝑦𝑗, ℎ𝑗}𝑗=1

𝑛𝑘
))  

4. Evaluate 𝑦𝑗+1 = 𝑓(𝒉𝑗+1), set 𝑛𝑘 = 𝑗 + 1 and 

𝑘 = 𝑘 + 1.  If termination criteria 𝝉 is not 

met, go-to step 2. 

 

3.4. CRISP-DM+ Approach for 

Hyperparameter Optimization 
 

Approaches such as CRISP-DM, provide general 

end-to-end processes to develop ML solutions [11].  

Work in [11] extended CRISP-DM by expanding the 

Data, Modeling, and Evaluation layers to include 1) 

selecting a dataset, 2) selecting an AI algorithm, and 

then 3) automatically determining hyperparameter 

settings without expert algorithmic knowledge. 

Herein, we consider the CRISP-DM+ items of [11]: 

A1. Data Wrangling for the Z-Wave RF-DNA 

problem, this was presented in Sections 2.2 and 2.3.  

A2. Select ML Architecture this was presented in 

Sections 2.4 and 2.5 for both the GRLVQI algorithms 

and the performance metrics of interest.  

B1. Train ML Model Using Default Weights 

generally involves taking the algorithm from A2, and 

finding a starting point from either default settings or 

example settings from help documentation [11]. 

Herein, this involves baselining with known settings.  

B2. Optimize Hyperparameters involves finding 

reasonable settings via hyperparameter optimization 

methods.  Of concern is determining initial ranges for 

the weights for the hyperparameter optimization 

methods. For BO, this could include the extreme limits 

of the design space, but not for SA and grid searches.   

C. Test & Compare Optimized Model. This will 

consider the classification and verification evaluation 

methods previously described in Section 2.5.   

 

4. Experimental Results 
 

To provide a general comparison of methods, this 

work considers four different methods of 

hyperparameter optimization: 1) a grid-search using a 

full factorial design and a spreadsheet search for the 

best result (GRLVQI-SS), 2) a response surface 

method extended upon the factorial design (GRLVQI-

RSM), 3) stochastic approximation (GRLVQI-SA), 

and 4) BO (GRLVQI-BO). This is compared against 

both 5) the baseline experientially determined settings 

of [5] (GRLVQI-base), and 6) MDA. 

 

4.1. Hyperparameter Design Region 
Considerations 
 
 Although hyperparameter optimization removes 

the problems of finding initial algorithm settings, the 

new problem is determining bounds for the search 
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region for each hyperparameter. As discussed in [5], 

limited prior work on GRLVQI hyperparameters for 

any purpose, let alone RF Fingerprinting, exists. Some 

general guidelines on settings do exist, and these 

include 1) values should be non-negative (negative 

learning rates would cause PVs to deviate from 

learning goals), and 2) a general recommendation that  

0≤𝜉(𝑡)≤𝜖(𝑡)≤1 [5].  Similar guidance does not exist for 

the conscience parameters, beyond non-negativity.  

Additionally, the only general guidance on PVs is that 

too few will not capture the data well and too many will 

overfit. Capturing these guidelines, using limits outside 

previously explored conscience rates, we have the 

general search region displayed in Table 1. 

 

Table 1. General Hyperparameter Search 

Region for GRLVQI 

Param. Meaning 
Initial Search 

Interval 

𝜖 Learning Rate [0, 1] 

𝜉 Relevance Learning Rate [0, 1] 

𝛾 Conscience Rate 1 [0, 10] 

𝛽 Conscience Rate 2 [0, 2] 

NPV 
Number of Prototype Vectors 

(PVs) per class 
[2, 28] 

 

 As seen in [5], traditional DoE need meaningful 

bounds to explore since the combination of settings 

from the extreme points of the interval are explored.  

Thus, Table 1 would be an impossibly wide interval 

with mostly unusable results (from learning rates of 0).  

Thus, the work of [5] explored values near the 

experimentally determined 𝒉𝟎 =
(0.025,0.005, 2.5, 3.5, 10) per [5].  For this, 243 (35) 

points were explored (high, centered, low).  

BO and SA operate different than the DoE.  Both 

can explore the space but do so in a different manner. 

BO will begin to model the response as a random 

process and collect seemingly random observations; 

SA will implement a hill-climbing approach and look 

for individual improvements to each hyperparameter. 

BO can explore the entire space of Table 1 and was 

allowed to do so.  SA needs a good initial operating 

point to improve upon; thus, as presented in [6], SA 

approached the problem by improving up on the 

experimentally determined 𝒉𝟎 =
(0.025,0.005, 2.5,3.5) [6].  For comparison across 

methods, the same computational “budget” of 35 

design points was given to BO and SA as well.  In SA 

much of this is spent by exploring the 4 continuous 

hyperparamters (𝜖, 𝜉, 𝛾, 𝛽) with changes of ±c as seen 

in (6). Thus, SA could only perform 31 full iterations 

(248 points) while BO could explore 243 unique points. 

In all cases, maximizing RAP was the objective and all 

algorithms were optimized for TNG set performance.  

  

Table 2. Experimental design region for 

GRLVQI from [5] 
Param. Meaning Search Interval 

𝜖 Learning Rate [0.0025, 0.025, 0.25] 

𝜉 
Relevance Learning 

Rate 
[0.0005, 0.005, 0.05] 

𝛾 Conscience Rate 1 [0.5, 2.0, 4.5] 

𝛽 Conscience Rate 2 [0.15, 0.35, 0.55] 

NPV 
Number of Prototype 

Vectors (PVs) per class 
[7, 10, 13] 

 

4.2. Results  

 
Figure 4 presents the classification performance 

from the optimal from each method using the TST set 

of %C versus SNR for 1) GRLVQI-BO, 2) GRLVQI-

SA), 3) GRLVQI-RSM, 4) GRLVQI-SS, 5) GRLVQI-

base, and 6) MDA. Notably, GRLVQI outperforms 

MDA, and each optimization method providing further 

improvements with BO being the best. 

 Table 3 condenses the results and presents 

verification performance.  In Table 3, RAP values were 

Table 3. Hyperparameters optimization comparative results, performance results in bold indicate best or within 

5% of the best by column 

Method NRUNS 

FACTORS LEVELS 

PERFORMANCE RESULTS 

CLASSIFICATION 
VERIFICATION   

AT SNR = 20DB 

A B C D E 

GSNR (DB) AT 

%C = 90%   
RAP (%) TVR 

(%) 
AUCM 

TNG TST TNG TST 

GRLVQI-BO* 243 0.868 0.0014 6.881 0.392 3 +7.02 +5.89 69.21 68.57 100 0.982 

GRLVQI-SA  248† 0.078 0.016 2.527 0.319 7 +5.16 +5.05 65.33 64.79 66 0.965 

GRLVQI-SS 243 0.25 0.05 2.0 0.35 7 +5.30 +5.77 67.39 65.80 66 0.979 

GRLVQI-RSM 249 0.150 0.05 4.5 0.15 7 +5.23 +5.26 66.57 65.33 66 0.967 

GRLVQI-base N/A 0.025 0.005 2.5 0.35 10 +3.72 +3.32 62.63 61.26 33 0.936 

MDA N/A N/A +1.68 0.00 68.27 55.5 100 0.971 

*Proposed herein. 

†For 31 iteration; it should be noted that [6] also performed 10 replications per iteration 
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computed relative to perfect results and thus RAP is a 

percentages of the area under a method’s %C vs SNR 

plot.  Here we see that GRLVQI outperforms MDA and 

the baseline GRLVQI significantly with progressively 

better classification performance as one moves up the 

table. BO notably provides considerably better 

performance across all classification metrics.    

 Additionally, Table 3 includes verification 

accuracy performance of all algorithms.  Non-

intuitively, GRLVQI has generally underperformed 

MDA at verification. Prior hyperparameter 

optimization attempts, see [5] [6], improved both 

verification and classification performance, but could 

not achieve %C = 100% authorized. However, the best 

design point from BO was able to achieve %C = 100% 

while outperforming all other methods for 

classification.  Thus, the BO optimized GRLVQI offers 

considerably improved performance over baseline 

GRLVQI and MDA which was achieved with a 

reasonable computation budget. 

 

4.2. Results, Digging Deeper 

 
As seen in Table 3 and noted in [6], very different 

combinations of settings can yield acceptable results. 

Thus, it is expected that multiple local maxima exist. 

To further investigate this, we can explore the surface 

of design points and results.  Figure 5 presents this 

surface for RAP versus the learning rate and relevance 

learning rate.  Blue dots are the explored points and the 

surface is interpolated between points; the best value 

obtained by a small red X in the lower right.  Figure 5 

shows that the highest RAP values are located in 

different areas of the parameter space with the surface 

itself is surprisingly variable.   

 

 
Figure 4. Classification performance for the TST 

set on evaluated algorithms 
 

Further exploration of the hyperprameter space is 

seen in Figure 6 for RAP versus conscience rates, and 

Figure 7 for RAP versus learning rate and NPV.  These 

surfaces exhibit a similarly high variablilty and 

illustrate the difficulty in finding acceptable 

operational settings. 

Figure 8 overlays both the DoE points (red x’s) of 

Table 2 and the SA design points (black o’s) onto a 

subset of Figure 5.  The path of SA shows the 

sequential approach of this method and SA notably 

explored only a small region of the space.  Conversely, 

the DoE approach is seen to explore more of the space, 

but demonstrates an inefficiency in that many runs 

appear wasted due to the design being full factorial in 

nature.  Thus, these data suggest that a space saving 

design would be more efficient.  However, as Figure 8 

shows that both SA and DoE explored only a small 

region of Figure 5, BO has further advantages in 

exploring more of the hyperparameter space. 

 

 
Figure 5. RAP results versus learning rate and 
relevance rate. GRLVQI-BO is red x (right). 

 
 

 
Figure 6. RAP results versus Conscience rate 1 
and Conscience rate 2. GRLVQI-BO is red x 
(middle right). 
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Figure 7. RAP results versus learning rate and 
PVs. GRLVQI-BO is red x (right). 

 
Figure 8. Overlay of SA (black O’s) and DoE (red 
X’s) approaches to hyperparameter optimization 
onto a small region, the lower middle, of Figure 5.   

 

5. Conclusions 

 
The authors presented the systematic application of 

hyperparameter optimization for WPAN device 

identification. For an application baseline, 

experimentally collected Radio Frequency (RF) 

Fingerprints for Z-Wave devices were considered.  

The GRLVQI neural network algorithm, which has 5 

tunable hyperparameters, was considered due to its 

prior successes in RF Fingerprint identification.  

However, no previously explored methods, including 

GRLVQI, achieve suitable performance consistently 

in both classification (one vs many) and verification 

(one vs one claimed identity).  To improve the 

operational security of GRLVQI for RF Fingerprinting 

applications, and other algorithms in general, we 

explored the application of four hyperparameter 

optimization methods to finding good settings.   

This work illustrated the necessity in determining 

appropriate GRLVQI algorithm settings and provided 

a further understanding of the hyperparameter and 

response relationship.  Primary contributions include 

improvements to communication device 

discrimination using RF Fingerprints by: 1) applying 

a CRISP-DM+ approach to hyperparameter 

optimization for RF Fingerprinting, 2) demonstration 

of this approach for GRLVQI optimization for Z-

Wave device discrimination, 3) improvements in the 

experimental approach of RF Fingerprinting classifier 

development, 4) an understanding of the 

hyperparameter space for complex cyber problems 

and algorithms, and 5) a comparison of 4 

hyperparameter optimization methods.  In total we 

compared Bayesian Optimization (BO), Stochastic 

Approximation (SA), Design of Experiments (DoE) 

with both a Spreadsheet Search (SS) and Response 

Surface Methodology (RSM). The systematic 

application of Bayesian Optimization (BO) was able 

to find GRLVQI algorithm settings that exceeded all 

prior bests at both classification and verification with 

100% verification accuracy achieved. The results 

further showed limitations in SA and DoE-based 

approaches which explored considerably more limited 

regions of the hyperparameter space.   

The theme of future work, in general, considers 

deeper understanding of the hyperparameter tradeoff 

space, including evaluating the robustness of these 

GRLVQI hyperparameters for other WPAN devices. 

Future work could also include combining 

methodologies, like refining initial BO solutions with 

SA, and appropriately handling variables that vary 

logarithmically, linearly, and as integers. Additionally, 

broader comparisons with other optimization methods 

additionally needs to be considered.  
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