Derivation and Analysis of Dynamic Handwriting Features as Clinical Markers of Parkinson’s Disease

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Parkinson’s Disease (PD) is a complex neurodegenerative disorder that is challenging to diagnose. Recent research has demonstrated predictive value in the analysis of dynamic handwriting features for detecting PD, however, consensus on clinically-useful features is yet to be reached. Here we explore and evaluate secondary kinematic handwriting features hypothesized to be diagnostically relevant to Parkinson’s Disease using a publicly-available Spiral Drawing Test PD dataset. Univariate and multivariate analysis was performed on derived features. Classification outcome was determined using logistic regression models with 10-fold cross validation. Feature correlation was based on model specificity and sensitivity. Variations in grip angle, instantaneous acceleration and pressure indices were found to have high predictive potential as clinical markers of PD, with combined classification accuracy of above 90%. Our results show that the significance of secondary handwriting features and recommend the feature expansion step for hypothesis generation, comparative evaluation of test types and improved classification accuracy.

Description

Keywords

Big Data on Healthcare Application, Information Technology in Healthcare, Handwriting Analysis, Parkinson’s Disease, Medical Screening, feature expansion and selection, Classification

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.