Derivation and Analysis of Dynamic Handwriting Features as Clinical Markers of Parkinson’s Disease
Files
Date
2019-01-08
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Parkinson’s Disease (PD) is a complex neurodegenerative disorder that is challenging to diagnose. Recent research has demonstrated predictive value in the analysis of dynamic handwriting features for detecting PD, however, consensus on clinically-useful features is yet to be reached. Here we explore and evaluate secondary kinematic handwriting features hypothesized to be diagnostically relevant to Parkinson’s Disease using a publicly-available Spiral Drawing Test PD dataset. Univariate and multivariate analysis was performed on derived features. Classification outcome was determined using logistic regression models with 10-fold cross validation. Feature correlation was based on model specificity and sensitivity. Variations in grip angle, instantaneous acceleration and pressure indices were found to have high predictive potential as clinical markers of PD, with combined classification accuracy of above 90%. Our results show that the significance of secondary handwriting features and recommend the feature expansion step for hypothesis generation, comparative evaluation of test types and improved classification accuracy.
Description
Keywords
Big Data on Healthcare Application, Information Technology in Healthcare, Handwriting Analysis, Parkinson’s Disease, Medical Screening, feature expansion and selection, Classification
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.