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Abstract 
 

Parkinson’s Disease (PD) is a complex 
neurodegenerative disorder that is challenging to 
diagnose. Recent research has demonstrated predictive 
value in the analysis of dynamic handwriting features 
for detecting PD, however, consensus on clinically-
useful features is yet to be reached. Here we explore 
and evaluate secondary kinematic handwriting features 
hypothesized to be diagnostically relevant to 
Parkinson’s Disease using a publicly-available Spiral 
Drawing Test PD dataset. Univariate and multivariate 
analysis was performed on derived features. 
Classification outcome was determined using logistic 
regression models with 10-fold cross validation. 
Feature correlation was based on model specificity 
and sensitivity. Variations in grip angle, instantaneous 
acceleration and pressure indices were found to have 
high predictive potential as clinical markers of PD, 
with combined classification accuracy of above 90%. 
Our results show that the significance of secondary 
handwriting features and recommend the feature 
expansion step for hypothesis generation, comparative 
evaluation of test types and improved classification 
accuracy. 
 
1. Introduction  
 

Parkinson’s Disease (PD) is one of the most 
prevalent neurodegenerative disorders, affecting 
approximately 1% of the population aged over 65 years 
[1]. PD is a progressive disorder that primarily affects 
the motor system, characterized by tremor, rigidity, 

slowness of movement (bradykinesia), loss of fine 
motor control, postural instability and latter-stage 
cognitive decline [2]. As handwriting is a complex 
process involving motor planning, programming, 
sequencing, initiation and execution [3], impaired 
handwriting (dysgraphia) is one of the earliest 
presentations of disrupted motor control with PD [2, 
4]. As there is currently no cure for the condition, early 
and accurate diagnosis is critical for effective 
management of disease progression through 
interventive therapies. However, the current diagnostic 
regime relies on subjective clinical examination with 
observations scored on rating scales e.g. Unified 
Parkinson’s Disease Rating Scale (UPDRS) [5] or the 
Hoehn and Yahr scale (H&Y) [6], leading to diagnostic 
scores that can vary depend on the experience and 
interpretation of the treating neurologist [7]. The rating 
scale system is insensitive to subtle early 
manifestations of neurodegeneration and has a 
misdiagnosis rate of up to 25% [8]. More objective 
means of assessing symptoms are required for earlier 
detection, improved diagnostic accuracy and therefore 
patient outcome. 

Advances in digitized handwriting technologies 
have enabled measurement, quantification and analysis 
of kinematic handwriting process features, offering the 
potential for earlier detection and more accurate 
diagnosis of PD. This application represents a cutting-
edge intersection of neuroscience, data analytics, 
artificial intelligence and kinesiology, and has enjoyed 
active development. Generally, PD handwriting and 
drawing test tasks are recorded using a digitized tablet 
and/or stylus and stored as a number of raw variables, 
most fundamentally: x, y and z coordinates, time and 
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relative pressure. Grip angle may also be recorded 
depending on the capabilities of the data collection 
platform and software. From these raw variables, 
features of both the final writing output and kinematic 
handwriting process are calculated for analysis and 
classification. 

While progress has been impressive [9-11], 
consensus on clinically significant handwriting process 
features for diagnosis of PD is yet to be reached [12, 
13]. Features reported to hold high statistical 
correlation with PD vary depending on the study 
design, drawing tasks, data collection tools, statistical 
models and classifier types, the selection of which 
intrinsically determines the types of data, quality and 
depth of insight obtainable. The lack of standardization 
between studies to date do not allow for meaningful 
comparison and evaluation.  

In this study, we apply a combination of a top-
down and bottom-up design approach to progress 
towards a standardizable digitized diagnostic support 
tool for PD. We propose that in order to develop the 
most accurate PD classification model possible, it is 
essential to extract and evaluate all potentially 
informative handwriting features from a ‘typical’ raw 
dataset regardless of recording platform. Furthermore, 
as handwriting is a complex, time-dependent sequence 
of preprogrammed movement, we hypothesize that 
analysis of the change in commonly reported features 
with time may provide further insight and predictive 
correlation to the physiological neuropathology of PD. 
We also hypothesize that broadened analysis of 
kinematic handwriting features may unlock 
informative trends to allow for objective evaluation 
and comparison of existing test designs. 

To address this gap in current knowledge, we 
conducted feature expansion and analysis on a PD 
spiral drawing dataset. We followed an integrated 
stepwise approach: (i) univariate analysis to 
individually identify the most relevant handwriting 
features for accurate differentiation of PD patients 
from healthy controls, and (ii) using a stepwise 
backward elimination approach to develop a 
multivariate combinative model based on the most 
significant set of handwriting features with potential 
application as an objective clinical screening or 
diagnostic tool. The following sections present a brief 
overview of handwriting analysis, our approach and 
findings. The physiological correlation of statistically 
significant features with PD and comparison of the 
spiral drawing tasks analyzed will also be presented 
along with perspectives for further feature-driven 
development. 
 

2. Handwriting Analysis in Parkinson’s 
Disease: An Overview  
 

A spectrum of impaired handwriting (dysgraphia) is 
well documented to be clinical hallmarks of PD, 
including micrographia (smaller than normal 
handwriting), slower writing speed and jerk due to 
tremor. Traditionally, clinical assessment is based on 
observation of both the handwriting process and static 
output of drawing and writing tasks designed to 
provide a tangible measure of motor-cognitive function 
by the level of writing proficiency. 

 
Figure 1. Examples of spiral test analysis and 
clinical scoring, (source: Hoogendam et al. 
[31]) 

 
Advances in digitized pen and tablet technologies 

have enabled the scientific measurement and analysis 
of static and dynamic handwriting metrics 
(graphonomics). This capability augments the depth of 
insight that can be obtained from writing and drawing 
tasks and potentially unlocks a wealth of previously 
unmeasurable information. Research to date has 
focused on digitizing established drawing tasks for 
assessing cognitive impairment, including: signature 
writing [11, 14], writing short phrases [15], pentagon 
copying [16-18], clock drawing [19], spiral drawing 
[20-22], circles and cursive looping [23, 24]. Of these, 
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writing words and phrases containing repetitions of 
cursive ‘l’ and ‘e’ have been commonly reported [25-
27]. However, writing is influenced by culture, 
penmanship training, level of education and linguistic 
ability [28]. Drawing tasks eliminates influential 
training bias and therefore allows for more universal 
application. The standard spiral drawing test (SST) is 
commonly used for evaluating motor performance and 
tremor in PD [12, 24, 29-31].  

In this test, patients trace an Archimedean spiral 
that has been pre-templated on a programmable 
pressure-sensitive graphics tablet; the degree of 
accuracy of following the template provides 
quantifiable assessment of tremor and handwriting 
impairment. A piece of paper may be overlaid to 
provide instant visual feedback. Data is stored as raw 
variables and processed offline. Analytical measures of 
a standard Archimedean spiral drawing test and 
examples of PD scoring are shown in Figure 1. The 
dynamic spiral test (DST) is a progressive variation of 
the SST proposed by Isenkul et al that involves tracing 
a blinking spiral template. The temporal component 
introduces another dimension of cognitive challenge 
which allows for correlative assessment of visual-
motor feedback. 
 
2.2 Data Acquisition Tools 
 

Digitization tablets in this area of research has been 
dominated by WACOM tablets (Wacom Technology 
Corporation, Portland, Oregon U.S.A), particularly the 
Intuos Pro series as they offer the highest spatial and 
temporal resolutions among their competitors [32].  
Outputs of drawing tasks are typically recorded on 
custom software as raw variables, e.g. cartesian co—
ordinates of a pen/stylus point, pressure and time, 
which are then processed for analysis.  

Various C, R and Matlab-based software systems 
have been developed to calculate graphic and 
kinematic handwriting features; most are custom and 
study-specific with the exception of MovAlyzeR and 
ComPET [25, 33]. 
 
2.3 Handwriting Feature Analysis 
 
     Typical features that have been investigated in 
literature to date can be considered to fall under two 
categories: graphic and kinematic. Graphic 
handwriting features describe static measures of the 
drawing output such as geometry, whereas kinematic 
features pertain to measures of dynamic handwriting 
processes.  These are summarized in Table 1 and Table 
2 respectively.  
 

3. Methods 
 

The focus of this study is to investigate whether 
secondary dynamic handwriting features in addition to 
those graphic features summarized in Table 1 hold 
predictive classification value, as well as whether they 
formulate informative indices for evaluating and 
comparing cognitive drawing tasks designed for 
diagnosing Parkinson’s Disease.  

The steps of our analysis are summarized in Figure 
2 and are presented in the following sections. 
 
Table 1. Graphic handwriting features relevant 

to diagnosis of PD and other neuro 
Graphic 
Feature Description 
Stroke length Absolute magnitude of on-surface 

movement between two successive 
pen-lifts 

Stroke height Absolute magnitude between the 
highest and lowest y-value positions of 
the stroke 

Stroke width Absolute magnitude between the 
highest and lowest x-value positions of 
the stroke 

Stroke duration Total time taken draw a stroke 

 Pressure recorded by a digitized pen or 
tablet, expressed in unscaled units 

 
Table 2. Summary of kinematic handwriting 

features relevant to diagnosis of PD and other 
neurodegenerative disorders 

Kinematic  
Feature Description 
Stroke speed Stroke length divided by stroke 

duration (mm/s) 

Speed* Absolute magnitude of velocity 
(mm/s) 

Velocity* Rate of directional change of pen 
position with time (mm/s) 

Acceleration* Rate of change of pen velocity with 
time (mm/s2) 

Jerk Rate of change of pen acceleration 
with time (mm/s3) 

Grip angle Angle the pen is held relative to the 
writing surface 

In-air time Time the pen is lifted off the writing 
surface during the task 

Contact time Duration of pen contacting the writing 
surface (normalized over total task 
duration) 

Change in 
pressure 

Variation in applied pressure 
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3.1 Data acquisition & preprocessing 
 
     Latent feature derivation and analysis was 
conducted using Isenkul et al’s PD study dataset 

containing the raw experimental drawing test data of a 
sample of 40 patients (25 PD patients and 15 healthy 
controls) [34].  
 

 
Figure 2. An optimized approach to creating a classifier system for PD from raw graphonomics 
data 
 

Table 3. Primary and secondary handwriting features derived from raw data variables 
Primary Features   

Feature Label Description/Formula 

Width (total) Width Maximum X co-ordinate minus minimum X co-ordinate 

Height (total) Height Maximum Y co-ordinate minus minimum Y co-ordinate 

Length Length Total length of the drawing, given by  with 
continuous drawing i.e. z = 0 

Speed Velocity Length ÷ total drawing time (V = L/T) 

Peak instantaneous 
speed 

PIV Highest speed recorded at any time point (Vi = Li / Ti) 

Peak instantaneous 
acceleration  

PIA Highest acceleration recorded at any time point (Ai = Vi / Ti) 

Secondary Features  

Feature Label Description/Formula 

Grip angle (Mean) GripAngleMean Average of grip angle values for the entire drawing task 

Grip angle (SD) GripAngleSD Standard deviation of grip angle values for the entire drawing task 

Pressure (Mean) PressureMean Average of recorded pressure values for the entire task 

Pressure (SD) PressureSD Standard deviation of recorded pressure values for the entire task 

Positive pressure 
change (Mean) 

PCAvgPos Average increase in pressure between two time points, given by p(i+1) -p(i) / 
t(i+1) – t(i) where p(i+1) > p(i) 

Positive pressure 
change (SD) 

PCSDPos Standard deviation of increase in pressure between two time points, given by 
p(i+1) -p(i) / t(i+1) – t(i) where p(i+1) > p(i) 

Maximum positive 
pressure change 

PCMax Maximum increase in handwriting pressure between two time points, given by 
Max[p(i+1) -p(i) / t(i+1) – t(i) for p(i+1) > p(i)] 

Negative pressure 
change (mean) 

PCAvgNeg Average decrease in pressure between two time points, given by p(i+1) -p(i) / 
t(i+1) – t(i) where p(i+1) < p(i) 

Negative pressure 
change (SD) 

PCSDNeg Standard deviation of decrease in pressure between two time points, given by 
p(i+1) -p(i) / t(i+1) – t(i) where p(i+1) < p(i) 

Maximum negative 
pressure change 

PCMin Maximum reduction in handwriting pressure between two time points, given by 
Max[p(i+1) -p(i) / t(i+1) – t(i) for p(i+1) < p(i)] 

*feature values calculated from Dynamic Spiral Test dataset variables, which are non-unitized except for time 

Each study participant performed three separate 
drawing tasks based on the spiral drawing: (i) Static 

Spiral Test which involves drawing on top of an 
Archimedes spiral template programmed into the 
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recording graphics tablet (Wacom Cintiq 12WX), (ii) 
Dynamic Spiral Test where the spiral template 
alternately appears and disappears at specific time 
intervals while the subject attempts to trace the spiral, 
and (iii) the circular motion test in which subjects draw 
circles around a central red point.  
      The raw dataset contains 6 handwriting variables 
for each test type: x position, y position, z position, 
pressure, grip angle and time, recorded at a sampling 
rate of 7 millisecond (interval) on custom software. As 
the DST uniquely explores an additional memory-
based cognitive dimension compared to the SST, the 
datasets for both the static and dynamic spiral drawing 
experimental groups were analyzed in our preliminary 
study for comparison. 
 
3.2 Feature derivation & expansion phase 
      Given that the dynamic spiral test is a progression 
of the standard spiral drawing test, it can be considered 
as a new test type that potentially holds new 
informative kinematic metrics relevant to PD, and 
which therefore necessitates additional metrics to 
evaluate. Furthermore, we hypothesize that the change 
in kinematic features with time may provide 
informative correlation with physiological and clinical 
presentations of PD in addition to the features 
commonly investigated (Table 1 and Table 2).  
     Our study purposes to explore both primary features 
i.e. those which are commonly derived from raw data 
variables, and secondary handwriting features which 
provide a measure of ‘submovements’, i.e. the subtle 
change of kinematic features with time. This work 
represents the first reported exploration of such 
handwriting features, which we hypothesize to hold 
clinical relevance and may allow more sensitive 
detection of PD. Therefore, sixteen features were 
derived from the six raw numerical variables in the 
SST and DST datasets respectively (Table 3). The 
sixteen handwriting features were then screened for 
potential redundancy and ranked to determine the 
highest statistical correlation/classification accuracy. 
 

3.3 Feature Ranking & Selection phase 
 
     Univariate logistic regression with 10-fold cross-
validation was performed on each of the 16 derived 
handwriting features according to the known condition 
outcomes: (PD) and control (healthy). The features for 
each test type (SST and DST) were then ranked from 
most correlative to least based on precision and recall 
measures as presented in Table 4 and Table 5. 
Weighted average ROC (model fit) was also 
considered. For features to be considered statistically 
significant, their precision and recall values must both 
exceed a threshold of 0.375 for the control group (15 

out of a sample of 40), and 0.625 for PD (25 out of 40). 
The most significant features for each test type are 
highlighted in the respective tables. 
      From univariate analysis of each feature derived 
from SST raw data (shown in Table 4), the most 
significant SST handwriting features are: peak 
instantaneous acceleration (PIA), maximum increase 
and reduction in pressure (PCMax and PCMin), 
standard deviation in pressure (PSD) and standard 
deviation of grip angle (GASD). 
 
Table 4. Results of univariate feature ranking 
results for SST based on precision and recall 
SST Precision Recall ROC 

Variable Control PD Control PD 

PIA 0.688 0.833 0.792 0.792 0.792 

PCMin 0.706 0.87 0.861 0.861 0.861 

PSD 0.692 0.778 0.741 0.741 0.741 

PCMax 0.667 0.75 0.741 0.741 0.741 

GASD 0.667 0.75 0.752 0.752 0.752 

PMean 0.667 0.8 0.667 0.667 0.667 

PCSDPos 0.571 0.667 0.699 0.699 0.699 

PCAvgPos 0.5 0.667 0.712 0.712 0.712 

PCSDNeg 0.5 0.647 0.752 0.752 0.752 

PCAvgNeg 0.4 0.629 0.643 0.643 0.643 

Height 0.333 0.622 0.597 0.597 0.597 

Width 0.2 0.6 0.713 0.713 0.713 

Length 0 0.615 0.245 0.245 0.245 

Velocity 0 0.615 0.328 0.328 0.328 

GAMean 0 0.625 0.232 0.232 0.232 

PIV 0 0.625 0.411 0.411 0.411 

 
Table 5. Results of univariate feature ranking 

for DST based on precision and recall 
DST Precision Recall 

ROC Variable Control PD Control PD 
GASD 0.667 0.8 0.667 0.8 0.813 
PIA 0.75 0.786 0.6 0.88 0.84 
PMean 0.643 0.769 0.6 0.8 0.635 
PCMax 0.778 0.742 0.467 0.92 0.765 
Height 0.5 0.667 0.333 0.8 0.68 
PSD 0.444 0.645 0.267 0.8 0.685 
PCSDPos 0.5 0.632 0.067 0.96 0.701 
PCMin 0 0.615 0 0.96 0.483 
PCAvgNeg 0 0.615 0 0.96 0.259 
PCAvgPos 0 0.615 0 0.96 0.667 
PCSDNeg 0 0.615 0 0.96 0.283 
Velocity 0 0.615 0 0.96 0.312 
Length 0 0.605 0 0.92 0.341 
Width 0 0.595 0 0.88 0.456 
GAMean 0 0.625 0 1 0.309 
PIV 0 0.625 0 1 0.421 
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Similarly, from univariate analysis of each feature 
derived from DST raw data (shown in Table 5), the 
handwriting features found to be most correlated to PD 
from DST are: peak instantaneous acceleration (PIA), 
standard deviation of grip angle (GASD), average 
pressure (PMean), increase in pressure (PCMax) and 
height of the drawing output (Height).  
     It must be noted that the recall value for the height 
variable control condition is lower than the threshold, 
however, it was considered as borderline significant as 
a 5th variable for consistency with the SST set. 
 

 
Figure 3. ROC plot showing the relative 
predictive potential of SST handwriting 

features 
 

 
Figure 4. ROC plot showing the relative 
predictive potential of DST handwriting 

features 
 
Receiver Operating Curve (ROC) space plots were 
then generated to visualize the relative significance of 
the features for each test type (Figure 3 and Figure 4). 
The values directly correspond to their significance 
ranking in Table 4 and Table 5 and indicate 

differential power, with the most correlative 
handwriting features closest to TPR=1 and FPR=0, i.e. 
towards the top left corner of the chart. 
 
3.4 Classification Model Generation & Evaluation 
 
     The most significant handwriting features 
(highlighted in Table 4 and Table 5) were then 
selected to build multivariate classification models for 
each test type (SST and DST). Logistic regression 
models with 10-fold cross validation were constructed 
firstly with the top 5 most significant features from 
univariate analysis, then iteratively refined by 
following a stepwise backward elimination approach, 
tested for multicollinearity and assessed based on the 
classification accuracy of the models. The results are 
presented as follows. 
 
3.4.1 SST 
 
    A logistic regression model based on the 5 most 
significant SST features obtained from univariate 
analysis (PressureSD, GripangleSD, PressureChange-
Max, PressureChangeMin, PeakInstantaneous-
Acceleration) yielded a classification accuracy of 90%. 
 

Table 6. SST based model (5-variables) 
Coefficients:
                                Estimate Std. Error z value Pr(>|z|)  
(Intercept)                     20.66263   10.22827   2.020   0.0434 **
PeakInstantaneousAcceleration -194.83877   96.31910  -2.023   0.0431 **
PressureChangeMin                0.25552    0.13028   1.961   0.0498 **
PressureSD                       0.03983    0.02695   1.478   0.1395  
PressureChangeMax               -1.18796    0.76575  -1.551   0.1208  
GripangleSD                     -0.02555    0.02933  -0.871   0.3837   
 
As shown in Table 6, GripangleSD was found to be the 
least statistically significant. Elimination of this 
variable was found to improve classification accuracy 
to 92.5%. Exclusion of the next less significant 
variable, PressureSD, yielded a combined classification 
accuracy of 85%, indicating that classification 
accuracy peaked at 92.5% with 4 variables ( 
Table 7).  

 
Table 7. SST final model (4-variables) 

Coefficients:
                                Estimate Std. Error z value Pr(>|z|)  
(Intercept)                     18.94526   10.62099   1.784   0.0745 *
PeakInstantaneousAcceleration -215.82887  118.60445  -1.820   0.0688 *
PressureChangeMin                0.24739    0.12844   1.926   0.0541 *
PressureSD                       0.03206    0.02350   1.364   0.1726  
PressureChangeMax               -1.30015    0.79850  -1.628   0.1035   
 
Further elimination and inclusion of other variables 
was not found to improve upon this value. These 
results indicate that the significant features for the SST 
test in differentiating PD are: peak instantaneous 
acceleration, maximum increase in pressure, maximum 
decrease in pressure and standard deviation of 
pressure. 
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An ROC Space plot for the SST multivariate logistic 
regression models (5-variable, 4-variable and 3-
varaible) was generated to visualize the relative 
classification performances (Figure 5). 

 
Figure 5. ROC Space plot showing the relative 
performance of the SST classification model 

 
3.4.2 DST 
 
     The combined classification accuracy from 
multivariate analysis of the 5 most significant DST 
features (PeakInstantaneousAcceleration, Gripangle-
SD, PressureChangeMax, PressureMean and Height) 
was found to be 85%.  
PressureMean was found to be the least statistically 
significant feature (Table 8), and its exclusion from the 
model yielded a combined classification accuracy of 
85%, confirming that it is independently insignificant.  
     Stepwise exclusion of PresureMean (4-variable 
model: GASD, PIA, PCMax, Height) and PCMax (3-
variable model: GASD, PIA, Height) was found to also 
yield classification accuracies of 85%. This result is as 
expected given the similarity in significance ranking of 
Height and PressureSD from univariate analysis. From 
multivariate analysis, PressureSD was found to hold 
higher differential significance than PressureMean as a 
pressure index 
      Removal of Height from the feature set reduced 
classification accuracy to 77.5%, indicating that it has 
associative significance with other handwriting 
features. Collinearity can be expected as these features 
were calculated from the same base raw variables 
 

Table 8. DST based model (5-variables) 
Coefficients:
                                Estimate Std. Error z value Pr(>|z|)  
(Intercept)                    8.747e+01  4.717e+01   1.854   0.0637 .
GripangleSD                   -1.051e-01  4.657e-02  -2.257   0.0240 **
PeakInstantaneousAcceleration -2.786e+02  1.491e+02  -1.868   0.0617 *
PressureMean                   3.421e-03  8.527e-03   0.401   0.6882  
maxpospc                      -8.618e-01  7.154e-01  -1.205   0.2283  
Height                        -1.885e-01  1.189e-01  -1.585   0.1129   

 
These results indicate that that the significant features 
for the DST test in differentiating PD are:  peak 
instantaneous acceleration, variation in grip angle and 
height of the drawing output (Table 9).  
 

Table 9. DST final model (3-variables) 
Coefficients:
                                Estimate Std. Error z value Pr(>|z|)  
(Intercept)                     55.79254   24.01928   2.323   0.0202 **
GripangleSD                     -0.09597    0.04109  -2.336   0.0195 **
PeakInstantaneousAcceleration -196.90155   85.53760  -2.302   0.0213 **
Height                          -0.11060    0.05368  -2.060   0.0394 **  
 
An ROC Space plot for the multivariate logistic 
regression (5-variable, 4-variable and 3-varaible) for 
DST with 10-fold cross validation were generated to 
visualize the relative classification performance of 
each model (Figure 6). 
 

 
Figure 6. ROC Space plot showing the relative 

performance of DST classification model 
 
4. Discussion & Clinical Interpretation  
 
4.1 Feature expansion & analysis 
 

Given that the shift towards digitized handwriting 
analysis in PD research is a relatively recent 
development, feature expansion is an important step to 
explore and derive potentially informative kinematic 
handwriting features that have not been previously 
considered. Indeed, secondary handwriting features 
obtained from the feature expansion step in this study 
were shown to have high predictive potential. 
Classification models based on a combination of the 
most significant features from 2-step logistic 
regression was found to yield high classification 
accuracies of 85% and 92.5% for DST and SST 
drawing tasks respectively.  

 

Page 3727



 

 

All 4 final SST model variables were found to be 
secondary handwriting features, whereas 2 of 3 the 
final DST model variables were secondary. These 
results validate the feature expansion step and 
consideration of latent kinematic characteristics in the 
analysis of PD handwriting. 
 
4.2 Comparison of Static and Dynamic Spiral Tests 
 

From a biomechanical perspective, it can be 
assumed that similar general sequences of hand, wrist, 
and upper limb motion are required to produce the 
same geometrical output. As both the static and 
dynamic Spiral Drawing Tests involve tracing the same 
Archimedean spiral template, it follows that the 
correlative ranking of individual features will be highly 
similar for both tests, and that any differences in 
feature significance are informative of the effect of the 
additional cognitive and temporal components of the 
DST on drawing motion within the respective 
experimental groups.  

Our results revealed differences in the statistical 
significance of individual handwriting features 
between the SST and DST. Overall, the additional 
testing conditions introduced by the DST resulted in 
greater variability and lower classification accuracy of 
individual features and in combination compared to 
results obtained for the SST. Further investigation with 
a larger experimental group is required to more 
definitively determine the influence of DST conditions 
compared to SST.  

It can be seen that the SST was more sensitive to 
assessing reduction and variations in pressure, which is 
consistent with previous reports of reduced writing 
pressure in PD groups [11] whereas the DST resulted 
in greater variations in grip angle and increased 
pressure. This is likely due to greater cognitive load 
required to trace the spiral template and heightened 
stress from altered visual-motor feedback and 
perception of time due to the blinking template.  

Peak instantaneous acceleration, a measurable 
manifestation of PD tremor, was among the highest 
correlative indicator of PD for both test types, 
suggesting its reliability as a clinical test biomarker.  
Interestingly, the height of the DST drawing output 
was found to have predictive significance but less so 
for the SST. It is possible that the temporal and visual-
motor feedback factors introduced by the DST 
exacerbate micrographia. PD patients have been 
reported to draw cursive loops progressively smaller 
with repetition [9]. As spiral drawing involves similar 
looped motion, it is possible that as both SST and DST 
test types were administered consecutively in the 
original study, the DST data was collected after the 
SST and was impacted by neuromuscular fatigue from 

repeated testing, which in turn emphasized 
micrographia in PD study participants. Further study 
where patients perform the SST and DST in individual 
sittings or with an adequate resting phase between data 
collection is required to investigate the phenomenon 
and elucidate comparison of the test types. 
 
4.3 Correlation of Handwriting Features with 
Parkinson’s Disease Neuropathology 
 

Tremor, micrographia, rigidity and bradykinesia 
(slowness of movement) are well recognized to be 
early manifestations of PD [4]. The results of our 
preliminary analysis indicate that peak instantaneous 
acceleration, pressure and grip indices hold high 
predictive potential as markers of PD in spiral drawing 
tasks. These findings are consistent with other reports 
that PD patients display greater variations in writing 
pressure [10]. The association between handwriting 
features analyzed and established clinical presentations 
of PD are summarized in Table 10. 

Acceleration is a kinematic measure of jerk due to 
tremor, a clinical hallmark of Parkinson’s Disease. 
Other related features to tremor include variations in 
applied pressure. The dynamic spiral test was shown to 
accentuate reduced drawing height, which is consistent 
with micrographia, more than the static spiral test. 
Further study is required to determine the role of 
visual-motor feedback in completion of digitized 
drawing tasks. 
 

Table 10. Correlation between handwriting 
features and Parkinson’s Disease symptoms 
PD hallmark 
presentation 

Corresponding handwriting 
features & abnormalities 

Tremor Peak instantaneous acceleration, 
peak instantaneous velocity, jerk, 
variations in applied pressure, 
absolute drawing output length 

Bradykinesia 
(slowness of 
movement) 

Writing speed, micrographia, 
deviation from template, height 
and length of drawing output 

Rigidity Writing speed, micrographia, 
grip, deviation from template, 
graphical features of drawing 
output, variations in applied 
pressure, average pressure 

Dementia 
(correlated 
with latter 
stage PD) 

Deviation from 
template/difficulty following task, 
variations in applied pressure, 
drawing output dimensional 
variations 
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5. Conclusions  
 

In the current diagnostic regime for PD, a 
combination of several drawing tasks is typically 
performed as the shape and design of each drawing 
task recruits different sets of cognitive and fine motor 
functions relevant to diagnosis of PD, e.g. drawing a 
circle differs from the angular motions required for 
producing a pentagon. The selection of tasks varies 
between studies, depending on the diagnosis the task is 
designed to assess, and the judgement of the clinician. 
Digitization of established drawing tests such as the 
spiral drawing test will allow objective comparison and 
evaluation of their clinicometric relevance in addition 
to their diagnostic value. 

Our study explored and analyzed previously 
unconsidered secondary handwriting features in the 
dataset from Isenkul et al’s Standard Spiral Test and 
Dynamic Spiral Test study. Our results demonstrate 
that secondary handwriting features, particularly 
changes in pressure indices, hold predictive potential in 
the differential diagnosis of Parkinson’s Disease from 
spiral drawing tasks. Feature expansion was shown to 
be conducive to hypothesis generation. Our systematic 
approach showed differences in the statistical 
correlation of individual features between the test 
types, indicating that the dynamic spiral test is 
sufficiently different from the standard spiral drawing 
test to be considered as a new test type. A combination 
of both static and dynamic tests, along with 
consideration of the secondary kinematic handwriting 
features presented in this study, have great potential to 
improve objective measurement of PD severity and our 
understanding of the subtle manifestations of PD in 
handwriting for earlier detection.  

Limitations of our findings include the small 
sample size of the dataset and lack of control in study 
design and data collection. Further investigation of 
larger sample sizes is required for greater confidence 
and confirmation of the differential power of individual 
handwriting features determined by our analysis.  
Furthermore, as digitization represents a paradigm shift 
of cognitive drawing tasks to a new platform, research 
is required in the development of a standardized 
protocol, tools and new drawing tests such as the 
Dynamic Spiral Test to optimally harness the 
capabilities of digital analysis, as well as to extend the 
application to assessing interrelated cognitive factors 
e.g. reflexes and memory. Task-dependent indices will 
also require development to allow meaningful 
comparison and evaluation of drawing tasks. 
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