Detecting Repackaged Android Applications Using Perceptual Hashing

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The last decade has shown a steady rate of Android device dominance in market share and the emergence of hundreds of thousands of apps available to the public. Because of the ease of reverse engineering Android applications, repackaged malicious apps that clone existing code have become a severe problem in the marketplace. This research proposes a novel repackaged detection system based on perceptual hashes of vetted Android apps and their associated dynamic user interface (UI) behavior. Results show that an average hash approach produces 88% accuracy (indicating low false negative and false positive rates) in a sample set of 4878 Android apps, including 2151 repackaged apps. The approach is the first dynamic method proposed in the research community using image-based hashing techniques with reasonable performance to other known dynamic approaches and the possibility for practical implementation at scale for new applications entering the Android market.

Description

Keywords

Software Development for Mobile Devices, the Internet-of-Things, and Cyber-Physical Systems, android, malware, mobile device security, perceptual hashing

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.