Detecting Repackaged Android Applications Using Perceptual Hashing
Files
Date
2020-01-07
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The last decade has shown a steady rate of Android device dominance in market share and the emergence of hundreds of thousands of apps available to the public. Because of the ease of reverse engineering Android applications, repackaged malicious apps that clone existing code have become a severe problem in the marketplace. This research proposes a novel repackaged detection system based on perceptual hashes of vetted Android apps and their associated dynamic user interface (UI) behavior. Results show that an average hash approach produces 88% accuracy (indicating low false negative and false positive rates) in a sample set of 4878 Android apps, including 2151 repackaged apps. The approach is the first dynamic method proposed in the research community using image-based hashing techniques with reasonable performance to other known dynamic approaches and the possibility for practical implementation at scale for new applications entering the Android market.
Description
Keywords
Software Development for Mobile Devices, the Internet-of-Things, and Cyber-Physical Systems, android, malware, mobile device security, perceptual hashing
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.