The Reliability Paradox: Exploring How Shortcut Learning Undermines Language Model Calibration
Files
Date
2025-01-07
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
851
Ending Page
Alternative Title
Abstract
The advent of pre-trained language models (PLMs) has enabled significant performance gains in the field of natural language processing. However, recent studies have found PLMs to suffer from miscalibration, indicating a lack of accuracy in the confidence estimates provided by these models. Current evaluation methods for PLM calibration often assume that lower calibration error estimates indicate more reliable predictions. However, fine-tuned PLMs often resort to shortcuts, leading to overconfident predictions that create the illusion of enhanced performance but lack generalizability in their decision rules. The relationship between PLM reliability, as measured by calibration error, and shortcut learning, has not been thoroughly explored thus far. This paper aims to investigate this relationship, studying whether lower calibration error implies reliable decision rules for a language model. Our findings reveal that models with seemingly superior calibration portray higher levels of non-generalizable decision rules. This challenges the prevailing notion that well-calibrated models are inherently reliable. Our study highlights the need to bridge the current gap between language model calibration and generalization objectives, urging the development of comprehensive frameworks to achieve truly robust and reliable language models.
Description
Keywords
AI Model Evaluation, calibration, generalization, pretrained language models, robustness, shortcut learning
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 58th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.