Two-Sided Value-Based Music Artist Recommendation in Streaming Music Services
Two-Sided Value-Based Music Artist Recommendation in Streaming Music Services
Files
Date
2019-01-08
Authors
REN, Jing
Kauffman, Robert
King, Dave
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Most work on music recommendations has focused on the consumer side not the provider side. We develop a two-sided value-based approach to music artist recommendation for a streaming music scenario. It combines the value yielded for the music industry and consumers in an integrated model. For the industry, the approach aims to increase the conversion rate of potential listeners to adopters, which produces new revenue. For consumers, it aims to improve their utility related to recommendations they receive. We use one year of listening records for 15,000+ Last.fm users to train and test the proposed recommendation model on 143 artists. Compared to collaborative filtering, the results show some improvement in recommendation performance by considering both sides’ value in con-junction with other factors, including time, location, external information and listening behavior.
Description
Keywords
Social Media Management in Big Data Era,
Digital and Social Media,
Artist recommendation, collaborative filtering, external information, streaming music, two-sided value
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.