Bayesian Augmentation of Deep Learning to Improve Video Classification

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Traditional automated video classification methods lack measures of uncertainty, meaning the network is unable to identify those cases in which its predictions are made with significant uncertainty. This leads to misclassification, as the traditional network classifies each observation with same amount of certainty, no matter what the observation is. Bayesian neural networks are a remedy to this issue by leveraging Bayesian inference to construct uncertainty measures for each prediction. Because exact Bayesian inference is typically intractable due to the large number of parameters in a neural network, Bayesian inference is approximated by utilizing dropout in a convolutional neural network. This research compared a traditional video classification neural network to its Bayesian equivalent based on performance and capabilities. The Bayesian network achieves higher accuracy than a comparable non-Bayesian video network and it further provides uncertainty measures for each classification.

Description

Keywords

Soft Computing: Theory Innovations and Problem Solving Benefits, bayesian, classification, deep learning, video, video surveillance

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.