A Photoionization Reflectron Time-of-Flight Investigation of Phosphorus Chemistry in Extraterrestrial Ices.

Date
2018-05
Authors
Turner, Andrew M.
Contributor
Advisor
Department
Chemistry
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Multiple phosphorus-containing compounds have been detected in the Solar System (planetary atmospheres, comets, meteorites) along with interstellar and circumstellar environments. Of particular astrobiological interest are alkyl phosphonic acids (RH2PO3, R = methyl, ethyl, propyl, and butyl) extracted from the Murchison meteorite. These phosphonic acids are the only extraterrestrial phosphorus-containing organic compounds thus far discovered and offer a bioavailable and highly soluble form of phosphorus due to its reduced oxidation state. The research of this dissertation investigates the synthesis of phosphorus-containing products of electron-irradiated interstellar ice analogues containing phosphine (PH3), water (H2O), carbon dioxide (CO2), and hydrocarbons such as methane (CH4). Phosphine is known to exist in circumstellar envelopes (IRC +10216), is hypothesized to exist in comets (67P/Churyumov-Gerasimenko), and may serve as the phosphorus source of complex organic compounds such as the alkyl phosphonic acids. Utilizing in situ analysis techniques such as quadrupole mass spectrometry (QMS), tunable-photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), and infrared spectroscopy (FTIR) in addition to ex situ analysis by secondary-ion mass spectrometry (SIMS) and two-dimensional gas chromatography mass spectrometry (GC×GC-TOF-MS), the intermediates and products of these irradiated ice analogues are characterized to demonstrate the potential to synthesize organic phosphine-containing molecules in astrophysical environments. Notable results include phosphanes (PxHx+2), methylphosphanes (CH3PxHx+1), and phosphorus oxoacids (H3POx, x=1−4, and pyrophosphoric acid (H4P2O7)) along with their alkylated equivalents such as prebiotically significant methylphosphonic acid (CH3P(O)(OH)2) and methylphosphate (CH3OP(O)(OH)2).
Description
Keywords
Citation
Extent
Format
Geographic Location
Time Period
Related To
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.