Fluorescent Microspheres as Proxies for Microorganism in a Deep Subseafloor Tracer Transport Experiment

dc.contributor.advisor Cowen, James
dc.contributor.author Teh, Soo
dc.contributor.department Geology and Geophysics
dc.date.accessioned 2014-09-26T20:42:12Z
dc.date.available 2014-09-26T20:42:12Z
dc.date.issued 2014-09-26
dc.description.abstract There is growing evidence that the subseafloor biosphere extends throughout the immense volume of aging basement underlying the global system of mid-ocean ridge flanks and ocean basins. The umbrella Tracer Transport experiment will be conducted by injecting fluorescent microspheres into a borehole on the flank of Juan de Fuca Ridge and monitoring their arrival at all of the observation boreholes. Microsphere transport rates obtained from this experiment will provide a basis for evaluating the origin of microbes observed in 3.5 million year old sediment-buried basement. In this experiment, the fluorescent microspheres are used as proxies for microorganism. Colloid tracers such as fluorescent microspheres are used to characterize flow rates and preferred flow paths of groundwater, and to gain information about the subsurface transport of microbial pathogens, or other colloidal contaminants. The objective of my thesis is to study the compatibility of these microspheres to the ocean basement environment for the tracer transport experiment, by defining their detection limits within the context of deep basement environment by the detection methods available, studying the characteristics of the microspheres and studying the behavior of colloid tracers through a basalt core. From the detection limit experiment, the minimum concentration detected for the fluorescence microscopy method is 10 microspheres/ filter and for the flow cytometry method is 40 microspheres/ ml. The two methods yield very similar results. Microspheres also clump significantly at high concentrations. The size and fluorescence of the microspheres remain unaffected by light, salinity, temperature (4 to 60 °C) or pressure (up to 80 bars).
dc.format.extent viii, 43 pages
dc.identifier.uri http://hdl.handle.net/10125/33766
dc.publisher University of Hawaii at Manoa
dc.rights All UHM Honors Projects are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
dc.title Fluorescent Microspheres as Proxies for Microorganism in a Deep Subseafloor Tracer Transport Experiment
dc.type Term Project
dc.type.dcmi Text
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Teh_SooHuey.pdf
Size:
6.23 MB
Format:
Adobe Portable Document Format
Description: