Automated Defect Detection of Screws in the Manufacturing Industry Using Convolutional Neural Networks
Files
Date
2022-01-04
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Defect detection in industrial production processes is an important and necessary part of quality control. Many defects can occur during the manufacturing process, causing high manufacturing costs. Thus the inspection of screws, which represent an indispensable element of many mechanical components, is a critical process. To reduce manufacturing costs and increase efficiency, a reliable method for inspection is Deep Learning. It can help simplify the process of quality control and increase the velocity and volume of detected defects in screws. This approach uses a CNN model to classify non-defective and defective screws with different types of defects. Instead of manual quality control methods, which can be easily biased, our CNN approach is accurate, cost-efficient, and fast, with an accuracy of over 97 percent. With this approach corresponding to industrial production processes, different defects in screws and non-defective screws can be classified from images according to a real-world industrial inspection scenario.
Description
Keywords
Case studies of Artificial Intelligence, Business Intelligence, Analytics Technologies for Industry Platforms, deep learning, manufacturing industry, quality control, screws
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.