Snake Detection and Classification using Deep Learning
Files
Date
2021-01-05
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
1212
Ending Page
Alternative Title
Abstract
Object detection is a major task in computer vision. With the rapid development of machine learning in the past few decades, and more recently deep learning, it is now possible to utilise complex machine learning models to automatically detect and classify objects from potentially complex images. In this paper we consider machine (deep) learning networks suitable for detection and classification of (Australian) snakes and their deployment and performance in a mobile environment. We explore state of the art Convolutional Neural Networks (CNNs) and their use for transfer learning. We develop an iOS application supporting an offline (model-embedded on the device) approach and an online version where images are sent to a Cloud-based server for classification. We present the results and discuss the performance differences as well as the impact on the accuracy and time for classification for the two environments.
Description
Keywords
Digital Mobile Services for Everyday Life, convolutional neural network, deep learning, image classification, mobile computing
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.