
Snake Detection and Classification using Deep Learning

Zihan Yang
School of Computing and Information Systems

The University of Melbourne
zihany1@student.unimelb.edu.au

Richard O. Sinnott
School of Computing and Information Systems

The University of Melbourne
rsinnott@unimelb.edu.au

Abstract

Object detection is a major task in computer vision.
With the rapid development of machine learning in the
past few decades, and more recently deep learning, it
is now possible to utilise complex machine learning
models to automatically detect and classify objects
from potentially complex images. In this paper we
consider machine (deep) learning networks suitable
for detection and classification of (Australian) snakes
and their deployment and performance in a mobile
environment. We explore state of the art Convolutional
Neural Networks (CNNs) and their use for transfer
learning. We develop an iOS application supporting
an offline (model-embedded on the device) approach
and an online version where images are sent to a
Cloud-based server for classification. We present the
results and discuss the performance differences as well
as the impact on the accuracy and time for classification
for the two environments.

1. Introduction

Computer vision has long been a popular research
direction. Its primary goal is to provide automated
visual information extraction and image analysis.
Unlike text information, graphical data usually requires
a higher-level of interpretation and processing [1].
In the past few years, the advancement in hardware
now provides sufficient computational power for much
more complicated calculation operations required for
image processing. Moreover, the rapid development
of machine learning (ML) has influenced the evolution
of computer vision applications. There has been
an increasing interest in applying machine learning
techniques for object detection tasks. These have
been shown to have superior performance over existing
heuristic-based methods [2]. However, in order
to fully extract inherent features from input images
has historically required complex Artificial Neural
Networks (ANN) demanding extensive computational

resources for data processing. With the general trend
in portable devices and especially mobile phones,
advanced machine learning technology is increasingly
available for mobile applications. A key challenge is
to optimise the image recognition task and achieving
adequate performance in varied environments.

This paper focuses on the exploration of several
object detection models as well as the underlying
classification backbone networks that can be used in a
mobile setting. To ground the work we consider a case
study comprising 11 different Australian snake species
including poisonous snakes.

2. Background and Related Work

Computer vision aims to provide computers with the
human-like visual capability of understanding graphical
information with no accompanying textual description
[1]. Common tasks include object detection and
object classification. Object classification involves
categorising an input image into several predefined
classes [3]. This provides the foundation for multiple
more advanced tasks such as semantic and instance
segmentation [4]. Object detection aims to rapidly
locate the region of an image where an object of interest
may appear [5].

To resolve aforementioned problems, researchers
have been using classical pattern matching in 1970s to
extract meaningful interpretation from graphical data
[6]. This feature-based approach is generally combined
with classical machine learning algorithms, including
Support Vector Machines and K- Nearest Neighbours
[7]. These methods perform well especially on simple
classification with very promising efficiency. However,
for complex classification in real life, it usually requires
extremely complicated models to describe potential
solutions, which limits both speed and accuracy of
traditional machine learning method.

In recent decade, the most popular approach for
visual recognition is based on Convolutional Neural
Networks (CNN). Even though there are multiple

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 1212
URI: https://hdl.handle.net/10125/70760
978-0-9981331-4-0
(CC BY-NC-ND 4.0)



alternatives to achieve image recognition, CNN have
been demonstrated to have superior performance for
image classification over them and even humans [8].
Several popular architectures of CNN are often used
in practice, including VGGNet [9], Inception [10],
Residual Network (ResNet) [11] and MobileNet [12].

VGGNet was first published in 2014 [9]. It
contained approximately up to 19 layers in total. The
main contribution of VGGNet was that it theoretically
demonstrated the correlation between the network depth
and accuracy. There are two commonly used variants
of VGGNet: VGG16 and VGG19 with the number
indicating the depth of the network. VGGNet utilizes
multiple small convolutional kernels, usually 3 × 3 to
achieve the same size of feature map.

Inception network was the winner of ILSVRC in
2014 [10]. It was specifically designed to optimize the
computation power inside the network. With network
depth of 22 layers in total, the Inception network
maintained a fixed cost of the computational resources
by making use of an inception layer. The principal
concept of Inception is to capture and repeat the
optimal local correlation patterns using dense clusters.
Following the ideas in [13], multiple filters within the
Inception layer are used to represent the correlation
of the previous layer. These filter banks are then
concatenated to form inputs to higher layers.

The architecture of modern neural networks has
become substantially deeper for better performance.
However, as the layers of network increase, the
complexity of the training process grows, while
the final accuracy may not always be improved
due to the vanishing gradient [14]. The goal of
ResNet was to solve the training problem of very
deep networks without incurring degradation problems.
ResNet addresses the degradation problem by explicitly
reformulating the structure of networks via residual
functions. It has been comprehensively shown
that ResNet can be trained using a network eight
times deeper than VGGNets, whilst maintaining lower
complexity [11].

The general trend of CNNs is to make deeper
networks to achieve higher accuracy [9]. This
tendency has resulted in a more complicated architecture
of CNNs and makes them unsuitable for many
realistic environments, especially mobile and embedded
computer vision applications. MobileNet approaches
this problem from a different direction. It provides a
class of more straightforward but more efficient CNN
models designed for environments with constrained
computational resources [12]. Instead of using a
standard convolution kernel, MobileNet utilizes a
depth-wise separable convolution filter, which consists

of a depth-wise convolution layer and a 1 × 1
point-wise convolution layer. By providing two global
hyper-parameters, MobileNet can trade off latency and
accuracy based on the application requirements.

Numerous deep learning frameworks have been
put forward for object detection. They are generally
organized into two major classes: two-stage detection
models and one-stage detection models. In the
former, the detector firstly generates all potential region
proposals likely to contain the object of interest and
these proposals are sent to a specific classifier for
further detection and classification [15]. The most
predominant two-stage model is Regions with CNN
Features (RCNN) [15]. For one-stage detection modes,
the detectors are region-free, i.e. there is no separate
procedure for proposal generation during the detection.
Instead, the detection process is designed to be unified to
predict the bounding box of the image of interest and the
corresponding class probabilities [16]. Representative
detectors include You Only Look Once (YOLO) [17]
and Single Shot Detector (SSD) [18]. RetinaNet [19]
was specifically designed to improve the accuracy of
one-stage approach via focal loss.

In undertaking any deep learning it is essential to
have a large, pure and feature-rich data set used for
training and validating the models. As discussed in this
work the focus was on Australian snakes.

3. Dataset

In order to ensure a sufficient quantity of training
data, the ImageNet database was for data collection.
ImageNet provides approximately 3.2 million images
over more than 5, 000 categories [20]. However, most of
the Australian snake species are not extensively covered
in the ImageNet dataset. Therefore, Google Image
was utilized to augment the data. For each breed,
images were retrieved via a Python crawling script using
the breed name as the keyword. However since the
quality of data can have a dramatic impact on the model
performance, it was necessary to first filter out images
with low resolution or irrelevant information. Due to
the mobile application requirements, all image data was
required to be greater than 224×224 pixels. A summary
distribution of all data is shown in Table 1.

For object detection, these images need to be
labelled with the location information of the object and
the corresponding class (snake type). LabelImg was
used for this purpose and data stored in PASCAL VOC
format.

For deep learning, more data is required. To address
this, data augmentation techniques were applied to
increase the size of the training dataset. Augmented

Page 1213



Table 1. Distribution of Australian Snake Data Used

Snake Breed Number of Images
Bandy Bandy 88
Carpet Python 149
Coastal Taipan 111
Common Death Adder 76
Eastern Brown Snake 147
Lowland Copperhead 62
Mulga Snake 97
Red-bellied Black Snake 65
Spotted Python 73
Tiger Snake 60
Western Brown Snake 99
Total 1027

data can also improve the performance of models
when dealing with deformed images. To this end,
random data augmentation was employed to accelerate
the training speed and improve the accuracy of the
model performance. The augmentation process was
randomly performed on mini-batches of data at runtime.
After that, the augmented data were then input into the
model for parameter learning. The actual augmentation
methods used included rotation, flipping, scaling and
adjustment of the colour contrast.

The collected data and annotations need to be split
into different subsets, e.g. training and evaluation
datasets. The latter is used for model evaluation and
should not be input into the model during training. In
this report, the ratio of the training data and evaluation
data was set to 9 : 1 respectively. The distribution of
the test data over 11 classes is shown in Figure 1. In
evaluation experiment, there are 100 images used for test
in total.

Figure 1. Distribution of the Snake Testing Data

4. Methodology and Experimental Set-Up

To achieve better performance of snake
classification, various CNN models were examined.
Specifically, they were used as the backbone networks
of different object detection models in the experiments.
Specifically the work considered VGGNet, ResNet,
Inception and MobileNet as introduced previously.

Examples of both two-stage and one-stage
frameworks were trained and evaluated. RCNN
[15] was chosen as a representative example of a
two-stage framework. Specifically a more advanced
region-based strategy Faster RCNN [21] was used. The
work also considered different backbone networks with
Faster RCNN: ResNet and Inception were used for the
case study.

For a unified approach, various detectors were
selected including SSD [18], YOLO v3 [22] and
its less commputationally demanding variation Tiny
YOLO, and RetinaNet [19]. They were compared with
Faster RCNN in terms of both accuracy performance
and inference speed. Since a potential reduction
in accuracy was expected, RetinaNet was trained
during the experiment to examine the accuracy using
a one-stage framework. The differences among these
one-stage methods were also taken into consideration.

All base networks were pre-trained using the
Microsoft Common Objects in Context (COCO) dataset
[23] to ensure basic recognition of common objects.
Due to its comprehensive coverage of everyday objects
this provides a suitable approach for pre-training in
order to provide a baseline model. Obtaining reasonable
weights for the base network lessens the burden of the
task-specific tuning required.

These baseline models were trained using the
collection of Australian snake images as described
previously. A cloud server provided by Google CoLab
was used for this purpose. The SSD MobileNet, SSD
VGG16, Faster RCNN Inception, Faster RCNN ResNet
and RetinaNet model training used the TensorFlow
framework and Keras APIs, while YOLO v3 and Tiny
YOLO used the Darknet neural network [17].

The loss value of the Faster RCNN with ResNet
during the training process is shown in Figure 2. A
significant reduction of loss is found at the beginning
of the training. As the number of epoch increases, it is
evident that the loss function decreases (gradually). At
around 200 epochs, the decrease in loss value becomes
less pronounced. The training loss of the network
reaches a plateau, which means that the weights of the
network have completed the convergence process and
will not benefit from further learning.

Additional optimization can be made to the model

Page 1214



Figure 2. Loss value of Faster RCNN using ResNet

during Training

hyper-parameters to accelerate the training and further
reduce the training loss. Several parameters were tuned
to obtain a suitable configuration providing optimal
performance including the batch size and the optimizer.
These were found to have a significant influence on
the training and accuracy of the model. Figure 3
shows an example visualization of the hyper-parameter
optimization for SSD VGG16 model.

Figure 3. Loss value of SSD VGG16 during

Hyper-parameter Tuning

The SSD VGG16 network used a batch size of 16
and the Adaptive Moment Estimation (Adam) optimizer
[24]. During the training, the training loss stopped
decreasing at epoch 20, giving a loss value of approx.
0.6. To further reduce the loss, the optimizer was
changed to Nesterov-accelerated Adaptive Moment
Estimation (Nadam). Nadam provided an improved
variant of the Adam optimizer by replacing the
vanilla momentum in Adam with a superior Nesterov
accelerated gradient (NAG) [25]. From Figure 3, the
training loss immediately rises to 0.8 after the change
in optimizer but as the training progresses, the loss
continues to drop. Furthermore, at epoch 60 the batch
size was changed from 16 to 8. Generally, large batch

sizes can result in poor generalization whilst a smaller
batch size may slow down the training process. It can
be seen from the graph that the training loss becomes
smoother with batch size = 8. The final loss converges
to approximately 0.2 at epoch 120, which is a reasonable
value.

The similar procedure was applied to the rest of
models with minor adjustment based on their different
features to achieve better performance. Overall,
batch size tended to have the greatest effect on the loss
value. For given training dataset, larger batch size could
greatly accelerate the training process but also led to
a higher loss value. In contrast, a small batch size
could reduce the final loss while may bring the risk of
overfitting [26].

5. Experimental Results

The work used the following experimental
environments. YOLO was trained on the Google
Colaboratory (CoLab) platform with the following
environment: NVIDIA Tesla K80 GPU with 24GB
and 12GB RAM. The other models were trained on a
desktop computer with an Nvidia GeForce GTX 1060
CPU with 6GB and 16GB RAM. The actual detection
experiment was conducted on a standard iPhone X with
256GB storage and 3GB RAM.

5.1. Mean Average Performance

For detecting and classifying Australian snakes,
multiple models were trained and evaluated.
Specifically, YOLOv3, Tiny YOLO, SSD MobileNet,
SSD VGG16, Faster RCNN ResNet and RetinaNet were
compared with regards to their mean average precision
(mAP). During the testing, one unexpected finding was
the poor performance of Faster RCNN Inception model
on the test data set. Despite the low plateau of the
Faster RCNN Inception train loss during training, the
trained model could not detect anything and produced
nearly 0 true positive results. This result was probably
due to the large number of parameters in the Inception
network leading to possible over-fitting. Therefore, the
evaluation focused on the other trained models.

The performance of all trained models is shown
in Table 2. In order to eliminate variable factors,
all base models were pre-trained on the same COCO
training-evaluation data set. These base models were
then trained and adjusted on the Australia snake training
data.

Table 2 shows the summary performance of each
detection model. As seen, there is a large difference
among the mAP for all models: from 33% to over 81%.
This is not surprising given the different complexities

Page 1215



Table 2. mAP on the Australian Snake dataset for
all Trained Models.

Model mAP Performance
YOLO v3 77.08%
Tiny YOLO 66.23%
SSD MobileNet 63.24%
SSD VGG16 55.56%
Faster RCNN ResNet 81.62%
RetinaNet 33.94%

and diverse structures of these models. Generally, it
has been considered that a more complicated model
achieves better accuracy. For example, Faster RCNN
ResNet, uses a significant number of parameters,
achieves the highest mAP (over 81%). For simpler
one-stage detection models such as SSD and RetinaNet,
the mAP is lower. Within the one-stage methods,
YOLOv3 has the best performance (over 77%), whereas
the RetinaNet model performs significantly worse.

The average precision (AP) of each class is visually
displayed in Figure 4. From the chart, it can be seen that
for the Carpet Python and Bandy Bandy classes, almost
all models achieve a high AP over 80%. However,
for some classes such as the Western Brown Snake and
Eastern Brown Snake, the AP of the models is relatively
low and at times zero, which implies that no ground
truth of this class could be successfully classified. Other
classes show a wide range of AP values with each
model. The class Lowland Copperhead is one of the
most representative examples, with its lowest AP being
0 while the highest AP exceeding 90%.

5.2. Inference Time

The inference time and the corresponding FPS of
each model is extremely important. For a mobile
application, the inference time can be more important
than accuracy to end-users because it can directly affect
user experience. Figure 5 shows a boxplot of the
original inference time measured in milliseconds. As
the figure shows, the inference time of Faster RCNN
ResNet is considerably greater than the other models.
The maximum value of Faster RCNN ResNet exceeds
14 seconds, while the peak value of other models is no
more than 4 seconds.

To compare Faster RCNN with other approaches,
a logarithmic scale is used and shown in Figure 6.
After data normalisation, it can still be seen that the
average time of Faster RCNN is much larger that the
other models. The inference time of YOLO series is the
least, which makes YOLO the best performing model (in
terms of the speed). For the SSD model, the choice of
backbone CNN network has a minor impact on the final

Figure 4. Average Precision Performance for all

models with each Class.

inference time. An SSD with a light-weight network
such as MobileNet has a superior speed than the SSD
using VGG16. While the variation of SSD MobileNet
is larger than SSD VGG16, which may imply some
instability during the inference process.

The number of outliers in some one-stage models
is clearly more than the two-stage model (Faster
RCNN). This phenomenon can be explained by model
initialisation. The SSD model with older VGG16
networks requires more resources during the launch
phase, however it does not affect the later inference
process of the model when the network is fully
established. What is surprising in Figure 6 is the long
inference time required by RetinaNet at more than 2.4
times the SSD model.

The average inference time of all models is shown
in Figure 7. All data is visualised without logarithmic
normalisation. To avoid the overwhelming skew
introduced by the Faster RCNN model, the mean
inference time of this model is removed in Figure 7. As
with the previous boxplot (Figure 6), the second-longest
inference time is found in RetinaNet. It is also clearly
shown that YOLOv3 and Tiny YOLO have the best
speed during evaluation with Tiny YOLO the best

Page 1216



Figure 5. Boxplot of the Inference Time (in ms).

Figure 6. Boxplot of the Inference Time Measured

in log(ms).

performance (speed).

Figure 7. Bar Chart of Mean Inference Time (ms)

5.3. Detection Experiments

From the accuracy and latency performance results
given in Section 5.1 and Section 5.2, the models with the
top performance are implemented in the iOS application
for comparison. Considering the constrained memory
space and computational power of mobile devices, only
Tiny YOLO was embedded in the application for truly
offline detection. At the server-end, Faster RCNN
ResNet was deployed to detect the online experiments.
A summary of the performance of both models is shown
in Table 3.

Table 3. Summary Table of the Tiny YOLO and
Faster RCNN ResNet Models.

Model Inference Time mAP
Tiny YOLO 49.93 ms 66.23%
Faster RCNN ResNet 5882.43 ms 81.62%

In order to compare the different approaches, two
kinds of model implementation were evaluated. Offline
(with the model running just on the mobile phone)
and online (where the phone was used to send an
image to the Cloud server for detection/classification
and returning of results).

5.3.1. Single Object Detection To demonstrate the
accuracy of these two different methods, an initial
experiment was to detect and classify a picture
containing a single snake (where the snake image was
not in the training data set). In these experiments,
the Faster RCNN ResNet model successfully detected
nearly all snake instances inside the image, achieving
almost 100% recall. In contrast, the embedded Tiny
YOLO performed relatively poorly (see Table 2).

One of the failed examples of Tiny YOLO is shown
in Figure 8 (a), where Tiny YOLO successfully detects
a snake but predicts the incorrect class. In Figure 8 (b),
the correct prediction result produced by Faster RCNN
ResNet is shown. As seen the snakes have a similar
colour to their environment. The ambiguous edge make
it difficult for the network to distinguish the snake from
its background.

Figure 8. Detection Experiment with a Single

Object. (a) Tiny YOLO (b) Faster RCNN ResNet

5.3.2. Multiple Object Detection This experiment
is designed to test both approaches when facing a
number of snakes within a single input image. It is
noted that pictures containing multiple, non-overlapping
Australian snakes are hard to find in a natural setting.
Therefore, a screenshot of several test images was used
as a substitute, as shown in Figure 9.

During this experiment, the recall accuracy of the

Page 1217



offline Tiny YOLO and the online Faster RCNN ResNet
were similar. Figure 9 compares the experimental results
of the two models. As seen, both algorithms were able
to detect and classify the instances, while Tiny YOLO
outperformed Faster RCNN with regard to multiple
detections. For each sub-image, Tiny YOLO gives very
high confidence score of its prediction. This is probably
due to the small number of the sub-images within the
input. The reason for the poor performance of Faster
RCNN could be the unnatural white space between each
sub-image. This part of the input greatly affects the
feature extraction and thus leads to a reduction in the
final accuracy.

Figure 9. Detection Experiment with Multiple

Objects. (a)Tiny YOLO (b)Faster RCNN ResNet

5.3.3. Overlapping Object Detection Instead of a
collection of separate pictures, it is much more common
to see snakes wrapping around each other. In such a
case, most of the snakes would have overlapping parts
within the picture, which causes challenges to detection.

In this experiment, the embedded model was found
to have limitations in detecting snakes close to one
another. For Faster RCNN, the accuracy of the result
was greatly decreased. As displayed in Figure 10, Tiny
YOLO was unable to clearly separate two overlapping
snakes. Instead, it only produced one (imprecise)
bounding box that included both snakes. Moreover, the
labelled result of Tiny YOLO was also invalid. Faster
RCNN could successfully detect two distinct instances
within the input. However, the prediction process was
affected by the overlapping parts resulting in one snake
being incorrectly classified.

Figure 10. Detection Experiment with Two

Overlapping Objects. (a)Tiny YOLO (b)Faster RCNN

ResNet

5.3.4. Deformed Object Detection Images with
different scales and ratios were also utilised to explore
the models in various situations. Overall, the accuracy
performance of both Tiny YOLO and Faster RCNN
was promising. Both models were able to detect most
deformed objects given as input. This was likely due
to the data augmentation approach used in the training
phase, where the scale and ratio of the labelled data were
adjusted and fed into the neural network. This procedure
not only increased the quantity of the training dataset but
also augmented the object detection.

A sample result for deformed object detection is
shown in Figure 11. It can be seen that both the online
and offline approach can precisely localise the bounding
box of the snake and give an accurate classification
result. However the confidence score of Faster RCNN
(81%) is higher than the Tiny YOLO (52%), which is
consistent with the fact that Faster RCNN achieves a
higher overall mAP (Table 2).

Figure 11. Detection Experiment with Deformed

Objects. (a)Tiny YOLO (b)Faster RCNN ResNet

Page 1218



5.3.5. Detection Latency Detection latency refers
to the total time that the model requires from taking
an image to outputting a final prediction result. The
network delay and the model loading time are included
as they reflect the end user experience. Table 4 presents
the mean inference time of the embedded Tiny YOLO
model and the online Faster RCNN ResNet model. The
size of the model file is also listed in the table.

Table 4. Summary Table of Two Different
Approaches

Approach Latency Model Size
Embedded Model 53.81 ms 58.9 MB
Server-end Model 6441.58 ms 114.2 MB

Considering Table 4, the mean latency of the
server-based Faster RCNN ResNet is significantly
higher than Tiny YOLO at over 6, 000ms. This table
can also be compared with Figure 5, which shows
approximately the same tendency where the two-stage
Faster RCNN demands much more time to process
images. What also stands out in this table is the growth
in inference time in the mobile environment. It can
be seen that the server-based model requires additional
time (around 500 milliseconds) for prediction, whilst
Tiny YOLO only results in a slight increase. In addition
to the network communication delay, this is likely due
to the different time in loading the model.

The Faster RCNN model file is 114.2 MB, which
is almost twice as big as the Tiny YOLO file. This
difference can be attributed to the complex architecture
of Faster RCNN and the two stages approach. In
contrast, Tiny YOLO is a light-weight one stage detector
specifically designed for constrained computational
resources and limited storage.

6. Discussion

6.1. Detection Model Comparison

From Table 2, it can be seen that Faster RCNN is
the most accurate model at over 80%. This result may
be explained by the fact that the two-stage architecture
provides better accuracy with its region-based network
[21]. The extra proposing procedure eliminates possible
missed cases, but demands larger computational
resources. Therefore, the pre-processing algorithm
improves the overall accuracy but at the cost of the
overall detection speed.

MobileNet and SSD provide comparable
performance for both speed and accuracy. However,
the mean inference time of SSD models still falls

behind that of YOLOv3 and Tiny YOLO. The reason
behind this phenomenon could be distinct architectures.
SSD produces more than one detection from multiple
features maps with different scales and ratios, which
may be an obstacle to the speed of inference. In YOLO,
feature maps are partially flattened and concatenated
together into low-resolution maps [17]. The final
prediction is then calculated from those maps through
a linear regression. The simple regression problem
greatly reduces the overall time consumed. The mean
inference time decreased by approximately 100ms
using YOLO instead of SSD. With the addition of FPN
for feature extraction, YOLOv3 also achieved a higher
mAP than SSD.

Tiny YOLO has a much smaller size and provides
faster inference speed during the experiments. It is
designed to further accelerate model prediction by
sacrificing some accuracy. According to [22], Tiny
YOLO is 4 times faster than YOLOv3, achieving around
200 FPS on the COCO dataset. However the accuracy of
Tiny YOLO drops to only 20% mAP. This also accords
with the observations in Table 2 and Figure 7, which
shows that the Tiny YOLO reports the smallest average
inference time among all models, with a 10% lower
mAP than YOLOv3.

One unanticipated finding was that no statistically
significant improvement in the performance was found
when using RetinaNet. RetinaNet adopts focal loss
to address the foreground-background class imbalance,
which has been shown to have a positive effect on
accuracy in previous research [19]. However, this work
has been unable to repeat the enhancement in using focal
loss. The overall performance, including both speed
and accuracy of RetinaNet, was found to be poorer
than other one-stage models. Possible reasons could
be inappropriate hyper-parameter configurations or low
data quality.

6.2. Choice of Backbone Network

Faster RCNN has been the predominant two-stage
framework for several years [16]. However, Faster
RCNN with the Inception network gave an mAP of
approx 0 during the experiments. This finding is
unexpected and suggests that the choice of the backbone
network for Faster RCNN may have a dramatic impact
on the final performance. This finding is consistent with
[16] who also identify the key role of the backbone
network in object feature representation. The Inception
network focuses on increasing the width to ameliorate
performance, especially on large-scale computer vision
tasks [10]. This measure effectively improves the final
accuracy but also introduces a larger feature space,

Page 1219



which has more demands on the quantity of input
data. A limited dataset is more likely to result in
possible over-fitting. This problem becomes even more
pronounced in transfer learning. In contrast, ResNet
increases the depth of the network in order to improve
the robustness of the model and therefore leads to a
better representation of non-linear features. As a result,
Faster RCNN ResNet achieves improved accuracy when
compared to other models, including Faster RCNN
Inception.

There are some CNNs specifically designed for
improving speed, such as MobileNet. The difference
between VGG16 and MobileNet is shown in Figure
7. The mean inference time of SSD MobileNet is
less than SSD using the backbone network VGG16.
This finding is consistent with that of Howard et
al. (2017), who claims that MobileNet is much less
computation-intensive than VGG due to its optimised
architecture. In terms of accuracy, SSD with MobileNet
also achieves a higher mAP value than SSD VGG16,
which is unsurprising. As mentioned in the literature
review, MobileNet can be 32 times smaller than VGG16
in terms of size yet it provides the same accuracy [12].
Previous studies also show that the size of VGGNet
could be compressed using pruning techniques while
still retaining the same performance [27].

6.3. Accuracy and Latency Trade-off

As seen above, there is a negative correlation
between accuracy and latency. The models that are able
to achieve higher accuracy should inherently consume
much greater computational power and thus result in
increased latency. However, light-weight networks
with fewer operations are typically faster but have
poorer performance, especially when detecting small or
overlapping objects.

When selecting a suitable model for a mobile device,
the trade-off of performance and speed should be
carefully balanced. The decision is highly dependant
on the specific requirements at hand. For example,
if the accuracy is the primary concern, a two-stage
detector such as Faster RCNN should be used to provide
improved performance. If speed of inference is more
important, then Tiny YOLO could be a better choice for
embedded-models.

6.4. Quality of Data

The overall performance of deep learning models is
greatly affected by the quality of training data. Since
the task here focused on Australian snakes, the feature
representation of each category was highly related to
the appearance of the different species. Some snake

breeds may have distinctive patterns or colours on their
skin, which can be easily identified by a neural network.
There are also several species that look similar to each
other, which is likely to result in almost identical feature
maps. In such a situation, accuracy would be impacted.
For example, the AP value of the Eastern Brown Snake
is generally lower than the AP of Bandy Bandy (Figure
4) even though the latter class contains less training data
(Table 1). The reason the vivid characteristics of the
Bandy Bandy, namely the sharply contrasting black and
white rings around their bodies. Therefore Bandy Bandy
is rarely mislabelled, thus guaranteeing the performance
of the model. In contrast, it can be relatively hard to
distinguish the Eastern Brown Snake and the Western
Brown Snake - at least for non-herpetologists.

Moreover, the imbalanced distribution of the training
dataset may also lead to a wide variance in AP values.
As displayed in Figure 4, the AP values of each class
can be very different. A larger amount of training
data is likely to be associated with a higher AP value,
e.g. as seen with the Carpet Python. In contrast, the
Lowland Copperhead has a high variance for the AP,
ranging from 0 to around 90%. Such results could
be explained by the insufficient quantity of Lowland
Copperhead images for training. This makes it’s
AP value highly sensitive to the architecture of the
model framework. This issue could be mitigated by
constructing a high-quality dataset with well-balanced
distribution among each class.

7. Conclusion and Future Work

In this paper we presented two approaches for
Australian snake detection and classification: a mobile
approach and use of a server. We explored multiple state
of the art models. The results of this work indicate that
different models can greatly vary in terms of accuracy
and their inference speed. Generally it can be said
that a more complex network would increase accuracy
compared a simpler model, while the latter may achieve
swifter inference and require fewer resources.

To get the application useful in the real life, there
are many possible future directions to improve the
work: extending the data collection, utilising the
spatial information. A more diverse training dataset
could potentially lead to a significant improvement
in accuracy, especially for those models based on a
relatively simple architecture. We would also need more
images of diverse species to make application capable
of recognising different kinds of snakes. For now, it
is only able to distinguish 11 snake breeds given the
limited training data, while there are over 100 species
of land snakes in Australia according to official record.

Page 1220



This information gap would need to be filled with a more
comprehensive bioinformation database of snakes.

We could also make the use of geographical
information associated with image data in the future.
During the classification, users can be localised using
GPS sensor in their mobile phone. This location data is
critically valuable for prediction, especially when users
are using the application to classify the photo they just
shoot. For example, Dugites, a venomous snake, is
native to Western Australia, which means that it is not
likely to see Dugites in the east side of Australia. Thus
we can factor this information into the application and
adjust confidence score of classification result based on
user’s real-time location.

References

[1] N. Sebe, I. Cohen, A. Garg, and T. S. Huang, Machine
learning in computer vision, vol. 29. Springer Science &
Business Media, 2005.

[2] A. Sharif Razavian, H. Azizpour, J. Sullivan, and
S. Carlsson, “Cnn features off-the-shelf: an astounding
baseline for recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition
workshops, pp. 806–813, 2014.

[3] W. Rawat and Z. Wang, “Deep convolutional neural
networks for image classification: A comprehensive
review,” Neural computation, vol. 29, no. 9,
pp. 2352–2449, 2017.

[4] A. Karpathy, “Convolutional neural networks for visual
recognition,” 2016.

[5] P. Druzhkov and V. Kustikova, “A survey of deep
learning methods and software tools for image
classification and object detection,” Pattern Recognition
and Image Analysis, vol. 26, no. 1, pp. 9–15, 2016.

[6] R. Szeliski, Computer vision: algorithms and
applications. Springer Science & Business Media,
2010.

[7] N. O’Mahony, S. Campbell, A. Carvalho,
S. Harapanahalli, G. V. Hernandez, L. Krpalkova,
D. Riordan, and J. Walsh, “Deep learning vs.
traditional computer vision,” in Science and Information
Conference, pp. 128–144, Springer, 2019.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification,” in Proceedings of the
IEEE international conference on computer vision,
pp. 1026–1034, 2015.

[9] K. Simonyan and A. Zisserman, “Very deep
convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1–9, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of
the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[13] S. Arora, A. Bhaskara, R. Ge, and T. Ma, “Provable
bounds for learning some deep representations,”
in International Conference on Machine Learning,
pp. 584–592, 2014.

[14] K. He and J. Sun, “Convolutional neural networks at
constrained time cost,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 5353–5360, 2015.

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik,
“Rich feature hierarchies for accurate object detection
and semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 580–587, 2014.

[16] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu,
and M. Pietikäinen, “Deep learning for generic object
detection: A survey,” International journal of computer
vision, vol. 128, no. 2, pp. 261–318, 2020.

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 779–788, 2016.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,
C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox
detector,” in European conference on computer vision,
pp. 21–37, Springer, 2016.

[19] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár,
“Focal loss for dense object detection,” in Proceedings
of the IEEE international conference on computer vision,
pp. 2980–2988, 2017.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in 2009 IEEE conference on computer vision
and pattern recognition, pp. 248–255, Ieee, 2009.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:
Towards real-time object detection with region proposal
networks,” in Advances in neural information processing
systems, pp. 91–99, 2015.

[22] J. Redmon and A. Farhadi, “Yolov3: An incremental
improvement,” arXiv preprint arXiv:1804.02767, 2018.

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft
coco: Common objects in context,” in European
conference on computer vision, pp. 740–755, Springer,
2014.

[24] M. D. Zeiler, “Adadelta: an adaptive learning rate
method,” arXiv preprint arXiv:1212.5701, 2012.

[25] T. Dozat, “Incorporating nesterov momentum into
adam,” 2016.

[26] A. Rosebrock, “A gentle guide to deep learning object
detection,” 2018.

[27] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

Page 1221


