Context Matters: The Use of Algorithmic Management Mechanisms in Platform, Hybrid, and Traditional Work Contexts
Files
Date
2023-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
5282
Ending Page
Alternative Title
Abstract
Emerged from platform organizations, algorithmic management (AM) refers to a data-driven approach in which intelligent algorithms are employed to automate managerial functions. Given its organizational benefits (e.g., efficiency gains), AM is also increasingly used in other work contexts, including traditional organizations (with permanent employees). Against this backdrop, our study investigates what AM mechanisms are used in different organizational work contexts and to what extent, and why, these mechanisms translate to other contexts. We do so by systematically analyzing and synthesizing knowledge from 45 studies. Our results point to seven usage patterns regarding the contextual translatability of AM mechanisms. For example, while we find that some mechanisms are used across contexts but with differing intentions, we also identify several context-specific AM mechanisms that are not (easily) translatable. We conclude by discussing factors that help explain the identified usage patterns (e.g., worker status and skill level) and promising avenues for future research.
Description
Keywords
AI, Organizing, and Management, algorithmic management (mechanisms), control/matching, platform vs. traditional work contexts
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.