Quantifying Visual Properties of GAM Shape Plots: Impact on Perceived Cognitive Load and Interpretability
Files
Date
2025-01-07
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
1406
Ending Page
Alternative Title
Abstract
Generalized Additive Models (GAMs) offer a balance between performance and interpretability in machine learning. The interpretability aspect of GAMs is expressed through shape plots, representing the model's decision-making process. However, the visual properties of these plots, e.g. number of kinks (number of local maxima and minima), can impact their complexity and the cognitive load imposed on the viewer, compromising interpretability. Our study, including 57 participants, investigates the relationship between the visual properties of GAM shape plots and cognitive load they induce. We quantify various visual properties of shape plots and evaluate their alignment with participants' perceived cognitive load, based on 144 plots. Our results indicate that the number of kinks metric is the most effective, explaining 86.4% of the variance in users' ratings. We develop a simple model based on number of kinks that provides a practical tool for predicting cognitive load, enabling the assessment of one aspect of GAM interpretability without direct user involvement.
Description
Keywords
Explainable Artificial Intelligence (XAI), cognitive load, generalized additive models, interpretable machine learning, shape plots, visual properties
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 58th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.