Improving the Adversarial Robustness of Machine Learning-based Phishing Website Detectors: An Autoencoder-based Auxiliary Approach

Date

2025-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

416

Ending Page

Alternative Title

Abstract

Anti-phishing research relies on collaboration between defensive and offensive efforts. The defensive side develops machine learning-based phishing website detectors to protect users from phishing attacks. However, adversaries can manipulate detectable phishing websites into evasive ones as adversarial examples, misleading detectors into classifying them as legitimate. Therefore, offensive efforts are vital to examine the threats posed by adversaries and inform the defensive side to improve the adversarial robustness of detectors. Prevailing approaches to improve adversarial robustness may compromise a detector’s original high performance on clean data (nonadversarial websites) as it becomes more accurate at detecting adversarial examples. To address this, we propose a novel approach using a Graph Convolutional Autoencoder as an auxiliary model to make collaborative decisions with the original detector in distinguishing evasive phishing websites from legitimate ones. We evaluate our approach by enhancing a CNN-based detector against adversarial attacks. Our approach achieves high adversarial robustness while maintaining high performance on clean data compared to retraining and fine-tuning benchmarks.

Description

Keywords

Cybersecurity in the Age of Artificial Intelligence, AI for Cybersecurity, and Cybersecurity for AI, adversarial robustness, cybersecurity, graph convolutional autoencoder, machine learning, phishing website detection

Citation

Extent

9

Format

Geographic Location

Time Period

Related To

Proceedings of the 58th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.