Pulsed field electroflotation for harvesting microalgae

Date
2014-05
Authors
Koelsch, Kyle Malone
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
[Honolulu] : [University of Hawaii at Manoa], [May 2014]
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Microalgae are used in a number of commercial applications including biofuel production, nutraceuticals, and as feedstock for aquaculture. Typical methods for harvesting microalgae like centrifugation, microfiltration, and foam fractionation are extremely energy intensive. Reducing the energy input for harvesting microalgae would improve the overall energy balance for algae based biofuels and benefit any industry where algae is required. One method for harvesting microalgae is electrolytic flotation (electroflotation). This is simply using electrolysis-generated bubbles to float particles out of suspension and to the surface. The primary objective of this research project is to examine the effects that electrical waveform characteristics have on bubble size, gas generation efficiency, biomass separation, and lipid separation of Chlorella sp. from a marine media. Sets of 23 factorial tests were performed on a coplanar interdigitated electrode array. The waveform variables reviewed included applied potential, duty cycle, and frequency. The smallest mean bubble diameter (30.1 μm) occurred at 3V, 20%, 25 Hz. The smallest median bubble diameter (25.0 μm) occurred at 3 V, 10%, 25 Hz. The highest observed gas generation efficiency (1.69x10-6 (mol J-1)) occurred at 3 V DC. The highest observed biomass recovery (6.8%) occurred at 6 V, 20%, 25 Hz. Lipid recovery analysis was attempted as well but high variability in results rendered it inconclusive.
Description
M.S. University of Hawaii at Manoa 2014.
Includes bibliographical references.
Keywords
biofuel
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Master of Science (University of Hawaii at Manoa). Biological Engineering.
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.