Data Systems Fault Coping for Real-time Big Data Analytics Required Architectural Crucibles

Date

2017-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper analyzes the properties and characteristics of unknown and unexpected faults introduced into information systems while processing Big Data in real-time. The authors hypothesize that there are new faults, and requirements for fault handling and propose an analytic model and architectural framework to assess and manage the faults and mitigate the risks of correlating or integrating otherwise uncorrelated Big Data, and to ensure the source pedigree, quality, set integrity, freshness, and validity of data being consumed. We argue that new architectures, methods, and tools for handling and analyzing Big Data systems functioning in real-time must design systems that address and mitigate concerns for faults resulting from real-time streaming processes while ensuring that variables such as synchronization, redundancy, and latency are addressed. This paper concludes that with improved designs, real-time Big Data systems may continuously deliver the value and benefits of streaming Big Data.

Description

Keywords

Analytics, Architecture, Big-Data, Faults, Risks

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 50th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.