Leveraging Large Language Models for Simplified Patient Summary Generation, Literature Retrieval and Medical Information Summarization: A Health CASCADE Study

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3255

Ending Page

Alternative Title

Abstract

In the evolving healthcare landscape, integrating advanced technologies such as machine learning and natural language processing has become vital. This paper presents an innovative system that leverages modern Natural Language Processing (NLP) capabilities to extract information from Electronic Health Records (EHRs) and generate simplified patient summaries (SPS). These SPS are subsequently used to provide clinicians with summaries of relevant academic literature, improving their ability to access pertinent information efficiently. The system architecture employs Large Language Models (LLMs) to generate SPSs and summarize relevant information, while dense vector retriever models are used for information retrieval from document corpus, which is created by combining parts of publicly available datasets such as PubMed, the CORD19 dataset, and more. The presented system has the potential to significantly reduce the time and effort required by clinicians to access relevant patient information, allowing them to concentrate more on patient care and contribute to improved patient outcomes.

Description

Keywords

Data Platforms and Ecosystems in Healthcare, electronic health records, fhir, information retrieval, natural language processing, summarization

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.