Fair CRISP-DM: Embedding Fairness in Machine Learning (ML) Development Life Cycle

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

With rapid adoption of machine learning (ML) technologies, the organizations are constantly exploring for efficient processes to develop such technologies. Cross-industry standard process for data mining (CRISP-DM) provides an industry and technology independent model for organizing ML projects’ development. However, the model lacks fairness concerns related to ML technologies. To address this important theoretical and practical gap in the literature, we propose a new model – Fair CRISP-DM which categorizes and presents the relevant fairness challenges in each phase of project development. We contribute to the literature on ML development and fairness. Specifically, ML researchers and practitioners can adopt our model to check and mitigate fairness concerns in each phase of ML project development.

Description

Keywords

Fairness in Algorithmic Decision Making, crisp-dm, fairness, machine learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.